449 research outputs found

    Seismic atlas of the "Messinian Salinity Crisis" markers in the Mediterranean and Black seas – Volume 2

    Get PDF
    Lofi, J. ... et. al.-- European Geosciences Union General Assembly 2014 (EGU2014), 27 april - 2 may 2014, Vienna, Austria.-- 1 pageThe Seismic atlas of the >Messinian Salinity Crisis> markers in the Mediterranean and Black seas – Volume 2 is a publication project in the framework of the study of the Messinian Salinity Crisis. It follows the publication of a first volume in 2011 (see Editors’ websites: http://ccgm.free.fr & http://sgfr.free.fr) and aims to illustrate the seismic characteristics of the MSC markers over news study areas. The Messinian Salinity Crisis is a huge outstanding succession of events that deeply modified the Mediterranean area within a short time span at the geological scale. In 2011, a seismic atlas of the Messinian markers in the Mediterranean and Black seas has been published [1]. This collective work summarizes, in one publication with a common format, the most relevant seismic features related to this exceptional event in the offshore domain. It also proposes a new global and consistent terminology for the MSC markers in the entire offshore Mediterranean area in order to avoid nomenclatural problems. Throughout 13 study areas, the seismic facies, geometry and extend of the Messinian markers (bounding surfaces and depositional units) are described. The Atlas however does not provide a complete description of all what that is known about the MSC and about the geology of each study area. Accordingly, illustrations in the Atlas should be used for a global description of the offshore imprints of the MSC at a broad scale, or for local information or site-specific general interpretations. Interpreted seismic data were carefully selected according to their quality, position and significance. Raw and interpreted seismic profiles are available on CD-Rom. Volume 2 is currently under preparation with the objectives : (1) to image the Messinian seismic marker from margins and basins that have not been illustrated in the first volume and (2) to complete the extension map of the MSC markers in the offshore and onshore domains at the Mediterranean scale. As the first volume, Volume 2 will also aim to share the geological interpretation of seismic reflection data imaging Messinian markers, to make this information accessible to the non geophysician community and to be a reference work that can be used by teachers and future researchers working on the Messinian event. This publication project is still open to anybody from industry and academia willing to contribute. At the present time, 16 new sites have been identified. Publication of the Seismic atlas of the >Messinian Salinity Crisis> markers in the Mediterranean and Black seas – Volume 2 is planned for Fall 2014. For more details, contactPeer Reviewe

    Submarine mass movements around the Iberian Peninsula. The building of continental margins through hazardous processes

    Get PDF
    Submarine mass movements, such as those which occur in all environments in every ocean of the world, are widely distributed across the Iberian continental margins. A lack of consistent data from various areas around the Iberian Peninsula makes it difficult to precisely understand their role in the sedimentary record. However, all the studies carried out over the past two decades reveal that they are a recurrent and widespread sedimentary process that may represent a significant geohazard. The majority of submarine mass movements observed in both the Mediterranean and Atlantic margins of the Iberian Peninsula have been generically identified as Mass Transport Deposits, but debris flows, slides, slumps and turbidites are common. Only a few remarkable examples involve huge volumes of sediment covering large areas (such as ~500 km3 and ~6x104 km2 ), but more moderate deposits (<200 km2 ) are frequently found on the seafloor or embedded in the sedimentary sequences, building margins and basins

    Evolution of a high-latitude sediment drift inside a glacially-carved trough based on high-resolution seismic stratigraphy (Kveithola, NW Barents Sea)

    Get PDF
    Rebesco, Michele ... et al.-- Special Issue: PAST Gateways (Palaeo-Arctic Spatial and Temporal Gateways).-- 16 pages, 12 figures, 2 tables, supplementary data http://dx.doi.org/10.1016/j.quascirev.2016.02.007Kveithola is a glacially-carved, E-W trending trough located in the NW Barents Sea, an epicontinental shelf sea of the Arctic Ocean located off northern Norway and Russia. A set of confined sediment drifts (the “Kveithola Drift”) is located in the inner part of the trough. In general, drift deposits are commonly characterized by high lateral continuity, restricted occurrence of hiatuses and relatively high accumulation rates, and thus represent excellent repositories of paleo-environmental information. We provide for the first time a detailed morphological and seismostratigraphic insight into this sediment drift, which is further supported by some preliminary lithological and sedimentological analyses. The complex morphology of the drift, imaged by combining all available multibeam data, includes a main and a minor drift body, two drift lenses in the outer part of the trough, more or less connected drift patches in the innermost part and small perched sediment patches in a structurally-controlled channel to the north. The seismic (PARASOUND) data show that the main and minor drift bodies are mainly well-stratified, characterized by sub-parallel reflections of moderate to high amplitude and good lateral continuity. The reflectors show an abrupt pinch-out on the northern edge where a distinct moat is present, and a gradual tapering to the south. Internally we identify the base of the drift and four internal horizons, which we correlate throughout the drift. Two units display high amplitude reflectors, marked lensoidal character and restricted lateral extent, suggesting the occurrence of more energetic sedimentary conditions. Facies typical for contourite deposition are found in the sediment cores, with strongly bioturbated sediments and abundant silty/sandy mottles that contain shell fragments. These characteristics, along with the morphological and seismic information, suggest a strong control by a bottom current flowing along the moat on the northern edge of the drift. Though both Atlantic and Arctic waters are known to enter the trough, from the west and the north respectively, brine-enriched shelf water (BSW) produced during winter and flowing westward in the moat, is suggested to be responsible for the genesis of the Kveithola Drift. The formation of BSW is inferred to have started around 13 cal ka BP, the onset of drift deposition, suggesting that conditions leading to atmospheric cooling of the surface waters and/or the presence of coastal polynyas and wind or floating ice shelves have persisted on the western Barents Shelf since that time. The units inferred to have been deposited under more energetic sedimentary conditions (tentatively dated to the Younger Dryas and to 8.9–8.2 cal ka BP) are suggestive of stronger BSW formation. In general, we infer that variations in the bottom current regime were mainly related to BSW formation due to atmospheric changes. They could also have been a response to successive episodes of grounded and sea ice retreat that allowed for a first limited, later open shelf current, which progressively established on the western Barents Sea shelfThe research cruise MSM30 CORIBAR and this study were partly funded through the MARUM DFG-Research Center/Cluster of Excellence “The Ocean in the Earth System” as part of MARUM project SD-2. This study contributes to the IPY initiative 367 NICESTREAM (Neogene Ice Streams and Sedimentary Processes on High- Latitude Continental Margins). The work was funded by the Italian projects OGS-EGLACOM, PNRA-CORIBAR-IT (PdR 2013/C2.01), ARCA (grant n. 25_11_2013_973) and PNRA-VALFLU, by the Council of Norway through its Centres of Excellence funding scheme (project number 223259), by the Spanish projects DEGLABAR (CTM2010-17386) and CORIBAR-ES (CTM2011-14807-E) funded by the “Ministerio de Economia y Competitividad”. The “Generalitat de Catalunya” is acknowledged for support through an excellence research group grant (2014SGR940). J.L. was funded by an FPI grant BES-2011-043614Peer Reviewe

    Large sediment waves on the Gulf of Valencia continental margin (NW Mediterranean): internal structure and evolution

    Get PDF
    Several fields of sediment waves have been recently observed over the Gulf of Valencia (NW Mediterranean) continental margin. Based on their morphology and internal structure, two different sets of sediment waves can be distinguished. Large sediment waves with 500 to 1000m wavelengths and 2 to 50m wave height are developed on the foreset region of the prograding margin clinoform, being found from 250 to 850m water depth. Additionally, over the outer shelf region, a second group of sediment waves also develops; displaying wavelengths in between 400 m and 800m and heights of 2 to 4m. Eustatic cycles control the development of the sediment waves on the outer continental shelf, which show several erosional truncations and growing stages. However, the sediment waves over the continental slope region seem to continuously evolve through time, at least since the Early/Lower Pliocene, without being affected by sea level changes

    From gravity cores to overpressure history: the importance of measured sediment physical properties in hydrogeological models

    Get PDF
    The development of overpressure in continental margins is typically evaluated with hydrogeological models. Such approaches are used to both identify fluid flow patterns and to evaluate the development of high pore pressures within layers with particular physical properties that may promote slope instability. In some instances, these models are defined with sediment properties based on facies characterization and proxy values of porosity, permeability or compressibility are derived from the existing literature as direct measurements are rarely available. This study uses finite-element models to quantify the differences in computed overpressure generated by fine-grained hemipelagic sediments from Gulf of Cadiz, offshore Martinique and Gulf of Mexico, and their consequences in terms of submarine slope stability. By comparing our simulation results with in-situ pore pressure data measured in the Gulf of Mexico, we demonstrated that physical properties measured on volcanic-influenced hemipelagic sediments underestimate the computed stability of a submarine slope. Physical properties measured on sediments from the study area are key to improving the reliability and accuracy of overpressure models, and when that information is not available literature data from samples with similar lithologies, composition and depositional settings enable better assessment of the overpressure role as a pre-conditioning factor in submarine landslide initiation

    Slope Instability along the northeastern Iberian and Balearic continental margins

    Get PDF
    This paper gathers the available information on submarine landslides identified in the northeastern Iberian continental margin and presents new data on both already known landslides and new, previously unknown ones. The 2,000 km2, 26 km3 resulting deposit of the BIG’95 debris flow in the Ebro margin; the 4 up to 16 km2, 0.4 km3 Eivissa slides in the Eivissa Channel; the 2 up to 65.6 km2, 1.46 km3 Barcelona slides in the shallow southern Catalan margin; and the western Gulf of Lions debris flow in the deep north Catalan margin are presented. This compilation is completed with several other previously undescribed small-scale mass-wasting deposits together with those observed in the Balearic Promontory. The amount and widespreading of submarine landslide deposits in the northern Iberian margins demonstrate that these margins are not an exception to the common occurence of these kind of structures worldwide, and gives an idea on this phenomena recurrence even in margins considered moderately quiet, in terms of seismicit

    Transient erosion in the Valencia Trough turbidite systems, NW Mediterranean Basin

    Get PDF
    12 pages, 9 figuresSubmarine canyons can efficiently drain sediments from continental margins just as river systems do in subaerial catchments. Like in river systems, submarine canyons are often arranged as complex drainage networks that evolve from patterns of erosion and deposition. In the present paper we use a morphometric analysis of submarine canyon-channel long-profiles to study the recent sedimentary history of the Valencia Trough turbidite system (VTTS) in the NW Mediterranean Sea. The VTTS is unique in that it drains sediment from margins with contrasting morphologies through a single “trunk” conduit, the Valencia Channel. The Valencia Channel has been active since the late Miocene, evolving in response to Plio-Quaternary episodes of erosion and deposition. The integrated analysis of long-profiles obtained from high-resolution bathymetric data across the entire turbidite system shows evidence for transient canyon incision in the form of knickpoints and hanging tributaries. Multiple factors appear to have triggered these periods of incision. These include a large debris flow at 11,500 yr BP that disrupted the upper reaches of the VTTS and glacio-eustatic lowstands that forced shifting of sediment input to the VTTS. Based on these inferences, long-term time-averaged incision rates for the Valencia Channel have been estimated. The evidence we present strongly suggests that Foix Canyon has played a key role in the drainage dynamics of the VTTS in the past. This study builds conceptually on a recent modeling study that provides a morphodynamic explanation for the long-term evolution of submarine canyon thalweg profiles. The procedure and results from this work are of potential application to other submarine sediment drainage systems, past and present, including those containing mid-ocean type valleys like the Valencia ChannelThis research was supported by the HERMIONE project, EC contract 226354-HERMIONE, funded by the European Commission's Seventh Framework Programme, and the HERMES Project, EC contract GOCE-CT-2005-511234, funded by the European Commission's Sixth Framework Programme under the priority “Sustainable Development, Global Change and Ecosystems”. It has also benefited from inputs by the PROMETEO (CTM2007-66316-C02-01/MAR), EDINSED3D (CTM2007-64880/MAR), and the GRACCIE CONSOLIDER (CSD2007-00067) projects, funded by the Spanish RTD Programme. GRC Geociències Marines is supported by Generalitat de Catalunya “Grups de Recerca Consolidats” grant 2009 SGR 1305Peer reviewe
    corecore