7 research outputs found

    The Authors Reply

    No full text

    Longitudinal Bone Loss Occurs at the Radius in CKD

    No full text
    International audienceIntroduction: Chronic kidney disease (CKD) exposes to an increased incidence of fragility fractures. International guidelines recommend performing bone mineral density (BMD) if the results will impact treatment decisions. It remains unknown where bone loss occurs and what would preclude the longitudinal loss in patients with CKD. Here, we aimed to investigate factors influencing BMD and to analyze the longitudinal BMD changes. Methods: In the NephroTest cohort, we measured BMD at the femoral neck, total hip, lumbar spine, and proximal radius, together with circulating biomarkers and standardized measured glomerular filtration rate (mGFR) by 51Cr-EDTA in a subset of patients with CKD stage 1 to 5 followed during 4.3 ± 2.0 years. A linear mixed model explored the longitudinal bone loss and the relationship of associated factors with BMD changes. A total of 858 patients (mean age 58.9 ± 15.2 years) had at least 1 and 477 had at least 2 BMD measures. Results: At baseline, cross-sectional analysis showed a significantly lower BMD at femoral neck and total hip and a significant higher serum parathyroid hormone (PTH) along with CKD stages. Baseline age, gender, tobacco, low body mass index (BMI), and high PTH levels were significantly associated with low BMD. Longitudinal analysis during the mean 4.3 years revealed a significant bone loss at the radius only. BMD changes at the femoral neck were associated with BMI, but not CKD stages or basal PTH levels. Conclusions: CKD is associated with low BMD and high PTH in the cross-sectional analysis. Longitudinal bone loss occurred at the proximal radius after 4.3 years

    Switching TNF antagonists in patients with chronic arthritis: An observational study of 488 patients over a four-year period

    No full text
    The objective of this work is to analyze the survival of infliximab, etanercept and adalimumab in patients who have switched among tumor necrosis factor (TNF) antagonists for the treatment of chronic arthritis. BIOBADASER is a national registry of patients with different forms of chronic arthritis who are treated with biologics. Using this registry, we have analyzed patient switching of TNF antagonists. The cumulative discontinuation rate was calculated using the actuarial method. The log-rank test was used to compare survival curves, and Cox regression models were used to assess independent factors associated with discontinuing medication. Between February 2000 and September 2004, 4,706 patients were registered in BIOBADASER, of whom 68% had rheumatoid arthritis, 11% ankylosing spondylitis, 10% psoriatic arthritis, and 11% other forms of chronic arthritis. One- and two-year drug survival rates of the TNF antagonist were 0.83 and 0.75, respectively. There were 488 patients treated with more than one TNF antagonist. In this situation, survival of the second TNF antagonist decreased to 0.68 and 0.60 at 1 and 2 years, respectively. Survival was better in patients replacing the first TNF antagonist because of adverse events (hazard ratio (HR) for discontinuation 0.55 (95% confidence interval (CI), 0.34-0.84)), and worse in patients older than 60 years (HR 1.10 (95% CI 0.97-2.49)) or who were treated with infliximab (HR 3.22 (95% CI 2.13-4.87)). In summary, in patients who require continuous therapy and have failed to respond to a TNF antagonist, replacement with a different TNF antagonist may be of use under certain situations. This issue will deserve continuous reassessment with the arrival of new medications. © 2006 Gomez-Reino and Loreto Carmona; licensee BioMed Central Ltd

    A 12-gene pharmacogenetic panel to prevent adverse drug reactions: an open-label, multicentre, controlled, cluster-randomised crossover implementation study

    No full text
    © 2023Background: The benefit of pharmacogenetic testing before starting drug therapy has been well documented for several single gene–drug combinations. However, the clinical utility of a pre-emptive genotyping strategy using a pharmacogenetic panel has not been rigorously assessed. Methods: We conducted an open-label, multicentre, controlled, cluster-randomised, crossover implementation study of a 12-gene pharmacogenetic panel in 18 hospitals, nine community health centres, and 28 community pharmacies in seven European countries (Austria, Greece, Italy, the Netherlands, Slovenia, Spain, and the UK). Patients aged 18 years or older receiving a first prescription for a drug clinically recommended in the guidelines of the Dutch Pharmacogenetics Working Group (ie, the index drug) as part of routine care were eligible for inclusion. Exclusion criteria included previous genetic testing for a gene relevant to the index drug, a planned duration of treatment of less than 7 consecutive days, and severe renal or liver insufficiency. All patients gave written informed consent before taking part in the study. Participants were genotyped for 50 germline variants in 12 genes, and those with an actionable variant (ie, a drug–gene interaction test result for which the Dutch Pharmacogenetics Working Group [DPWG] recommended a change to standard-of-care drug treatment) were treated according to DPWG recommendations. Patients in the control group received standard treatment. To prepare clinicians for pre-emptive pharmacogenetic testing, local teams were educated during a site-initiation visit and online educational material was made available. The primary outcome was the occurrence of clinically relevant adverse drug reactions within the 12-week follow-up period. Analyses were irrespective of patient adherence to the DPWG guidelines. The primary analysis was done using a gatekeeping analysis, in which outcomes in people with an actionable drug–gene interaction in the study group versus the control group were compared, and only if the difference was statistically significant was an analysis done that included all of the patients in the study. Outcomes were compared between the study and control groups, both for patients with an actionable drug–gene interaction test result (ie, a result for which the DPWG recommended a change to standard-of-care drug treatment) and for all patients who received at least one dose of index drug. The safety analysis included all participants who received at least one dose of a study drug. This study is registered with ClinicalTrials.gov, NCT03093818 and is closed to new participants. Findings: Between March 7, 2017, and June 30, 2020, 41 696 patients were assessed for eligibility and 6944 (51·4 % female, 48·6% male; 97·7% self-reported European, Mediterranean, or Middle Eastern ethnicity) were enrolled and assigned to receive genotype-guided drug treatment (n=3342) or standard care (n=3602). 99 patients (52 [1·6%] of the study group and 47 [1·3%] of the control group) withdrew consent after group assignment. 652 participants (367 [11·0%] in the study group and 285 [7·9%] in the control group) were lost to follow-up. In patients with an actionable test result for the index drug (n=1558), a clinically relevant adverse drug reaction occurred in 152 (21·0%) of 725 patients in the study group and 231 (27·7%) of 833 patients in the control group (odds ratio [OR] 0·70 [95% CI 0·54–0·91]; p=0·0075), whereas for all patients, the incidence was 628 (21·5%) of 2923 patients in the study group and 934 (28·6%) of 3270 patients in the control group (OR 0·70 [95% CI 0·61–0·79]; p <0·0001). Interpretation: Genotype-guided treatment using a 12-gene pharmacogenetic panel significantly reduced the incidence of clinically relevant adverse drug reactions and was feasible across diverse European health-care system organisations and settings. Large-scale implementation could help to make drug therapy increasingly safe. Funding: European Union Horizon 2020

    Evaluation of a quality improvement intervention to reduce anastomotic leak following right colectomy (EAGLE): pragmatic, batched stepped-wedge, cluster-randomized trial in 64 countries

    Get PDF
    Background Anastomotic leak affects 8 per cent of patients after right colectomy with a 10-fold increased risk of postoperative death. The EAGLE study aimed to develop and test whether an international, standardized quality improvement intervention could reduce anastomotic leaks. Methods The internationally intended protocol, iteratively co-developed by a multistage Delphi process, comprised an online educational module introducing risk stratification, an intraoperative checklist, and harmonized surgical techniques. Clusters (hospital teams) were randomized to one of three arms with varied sequences of intervention/data collection by a derived stepped-wedge batch design (at least 18 hospital teams per batch). Patients were blinded to the study allocation. Low- and middle-income country enrolment was encouraged. The primary outcome (assessed by intention to treat) was anastomotic leak rate, and subgroup analyses by module completion (at least 80 per cent of surgeons, high engagement; less than 50 per cent, low engagement) were preplanned. Results A total 355 hospital teams registered, with 332 from 64 countries (39.2 per cent low and middle income) included in the final analysis. The online modules were completed by half of the surgeons (2143 of 4411). The primary analysis included 3039 of the 3268 patients recruited (206 patients had no anastomosis and 23 were lost to follow-up), with anastomotic leaks arising before and after the intervention in 10.1 and 9.6 per cent respectively (adjusted OR 0.87, 95 per cent c.i. 0.59 to 1.30; P = 0.498). The proportion of surgeons completing the educational modules was an influence: the leak rate decreased from 12.2 per cent (61 of 500) before intervention to 5.1 per cent (24 of 473) after intervention in high-engagement centres (adjusted OR 0.36, 0.20 to 0.64; P &lt; 0.001), but this was not observed in low-engagement hospitals (8.3 per cent (59 of 714) and 13.8 per cent (61 of 443) respectively; adjusted OR 2.09, 1.31 to 3.31). Conclusion Completion of globally available digital training by engaged teams can alter anastomotic leak rates. Registration number: NCT04270721 (http://www.clinicaltrials.gov)
    corecore