1,195 research outputs found
Quantifying entanglement in multipartite conditional states of open quantum systems by measurements of their photonic environment
A key lesson of the decoherence program is that information flowing out from
an open system is stored in the quantum state of the surroundings.
Simultaneously, quantum measurement theory shows that the evolution of any open
system when its environment is measured is nonlinear and leads to pure states
conditioned on the measurement record. Here we report the discovery of a
fundamental relation between measurement and entanglement which is
characteristic of this scenario. It takes the form of a scaling law between the
amount of entanglement in the conditional state of the system and the
probabilities of the experimental outcomes obtained from measuring the state of
the environment. Using the scaling, we construct the distribution of
entanglement over the ensemble of experimental outcomes for standard models
with one open channel and provide rigorous results on finite-time
disentanglement in systems coupled to non-Markovian baths. The scaling allows
the direct experimental detection and quantification of entanglement in
conditional states of a large class of open systems by quantum tomography of
the bath.Comment: 12 pages (including supplementary information), 4 figure
Ontology-Based Data Access and Integration
An ontology-based data integration (OBDI) system is an information management system consisting of three components: an ontology, a set of data sources, and the mapping between the two. The ontology is a conceptual, formal description of the domain of interest to a given organization (or a community of users), expressed in terms of relevant concepts, attributes of concepts, relationships between concepts, and logical assertions characterizing the domain knowledge. The data sources are the repositories accessible by the organization where data concerning the domain are stored. In the general case, such repositories are numerous, heterogeneous, each one managed and maintained independently from the others. The mapping is a precise specification of the correspondence between the data contained in the data sources and the elements of the ontology. The main purpose of an OBDI system is to allow information consumers to query the data using the elements in the ontology as predicates.
In the special case where the organization manages a single data source, the term ontology-based data access (ODBA) system is used
On the succinctness of query rewriting over shallow ontologies
We investigate the succinctness problem for conjunctive query rewritings over OWL2QL ontologies of depth 1 and 2 by means of hypergraph programs computing Boolean functions. Both positive and negative results are obtained. We show that, over ontologies of depth 1, conjunctive queries have polynomial-size nonrecursive datalog rewritings; tree-shaped queries have polynomial positive existential rewritings; however, in the worst case, positive existential rewritings can be superpolynomial. Over ontologies of depth 2, positive existential and nonrecursive datalog rewritings of conjunctive queries can suffer an exponential blowup, while first-order rewritings can be superpolynomial unless NP �is included in P/poly. We also analyse rewritings of tree-shaped queries over arbitrary ontologies and note that query entailment for such queries is fixed-parameter tractable
Quantum Conductance Steps in Solutions of Multiwalled Carbon Nanotubes
We have prepared solutions of multiwalled carbon nanotubes in Aroclor 1254, a
mixture of polychlorinated biphenyls. The solutions are stable at room
temperature. Transport measurements were performed using a scanning--tunneling
probe on a sample prepared by spin--coating of the solution on gold substrates.
Conductance steps were clearly seen. An histogram of a high number of traces
shows maximum peaks at integer values of the conductance quantum , demonstrating ballistic transport at room temperature along the carbon
nanotube over distances longer than .Comment: 4 pages and 2 figure
Contribution of microscopy for understanding the mechanism of action against trypanosomatids
Transmission electron microscopy (TEM) has proved to be a useful tool to study the ultrastructural alterations and the target organelles of new antitrypanosomatid drugs. Thus, it has been observed that sesquiterpene lactones induce diverse ultrastructural alterations in both T. cruzi and Leishmania spp., such as cytoplasmic vacuolization, appearance of multilamellar structures, condensation of nuclear DNA, and, in some cases, an important accumulation of lipid vacuoles. This accumulation could be related to apoptotic events. Some of the sesquiterpene lactones (e.g., psilostachyin) have also been demonstrated to cause an intense mitochondrial swelling accompanied by a visible kinetoplast deformation as well as the appearance of multivesicular bodies. This mitochondrial swelling could be related to the generation of oxidative stress and associated to alterations in the ergosterol metabolism. The appearance of multilamellar structures and multiple kinetoplasts and flagella induced by the sesquiterpene lactone psilostachyin C indicates that this compound would act at the parasite cell cycle level, in an intermediate stage between kinetoplast segregation and nuclear division. In turn, the diterpene lactone icetexane has proved to induce the external membrane budding on T. cruzi together with an apparent disorganization of the pericellar cytoskeleton. Thus, ultrastructural TEM studies allow elucidating the possible mechanisms and the subsequent identification of molecular targets for the action of natural compounds on trypanosomatids.Fil: Lozano, Esteban Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; ArgentinaFil: Spina Zapata, Renata María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Ciencias Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Barrera, Patricia Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Ciencias Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Tonn, Carlos Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Investigaciones en Tecnología Química. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Investigaciones en Tecnología Química; ArgentinaFil: Sosa Escudero, Miguel Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Ciencias Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; Argentin
Exploration Medical System Technical Architecture Overview
The Exploration Medical Capability (ExMC) Element Systems Engineering (SE) goals include defining the technical system needed to support medical capabilities for a Mars exploration mission. A draft medical system architecture was developed based on stakeholder needs, system goals, and system behaviors, as captured in an ExMC concept of operations document and a system model. This talk will discuss a high-level view of the medical system, as part of a larger crew health and performance system, both of which will support crew during Deep Space Transport missions. Other mission components, such as the flight system, ground system, caregiver, and patient, will be discussed as aspects of the context because the medical system will have important interactions with each. Additionally, important interactions with other aspects of the crew health and performance system are anticipated, such as health & wellness, mission task performance support, and environmental protection. This talk will highlight areas in which we are working with other disciplines to understand these interactions
Same Difference: How Gender Myths Are Hurting Our Relationships, Our Children, and Our Jobs, by Rosalind Barnett & Caryl Rivers
Classical wave experiments on chaotic scattering
We review recent research on the transport properties of classical waves
through chaotic systems with special emphasis on microwaves and sound waves.
Inasmuch as these experiments use antennas or transducers to couple waves into
or out of the systems, scattering theory has to be applied for a quantitative
interpretation of the measurements. Most experiments concentrate on tests of
predictions from random matrix theory and the random plane wave approximation.
In all studied examples a quantitative agreement between experiment and theory
is achieved. To this end it is necessary, however, to take absorption and
imperfect coupling into account, concepts that were ignored in most previous
theoretical investigations. Classical phase space signatures of scattering are
being examined in a small number of experiments.Comment: 33 pages, 13 figures; invited review for the Special Issue of J.
Phys. A: Math. Gen. on "Trends in Quantum Chaotic Scattering
Scenedesmus incrassatulus CLHE-Si01: A potential source of renewable lipd for high quality biodiesel production
The potential of microalgal oil from Scenedesmus incrassatulus as a feedstock for biodiesel production was studied. Cell concentration of S. incrassatulus and lipid content obtained during mixotrophic growth were 1.8 g/L and 19.5 ? 1.5% dry cell weight, respectively. The major components of biodiesel obtained from S.incrassatulus oil were methyl palmitate (26%) and methyl linoleate (49%), which provided a strong indication of high quality biodiesel. Fuel properties were determined by empirical equations and found to be within the limits of biodiesel standard ASTM D6751 and EN 14214. The quality properties of the biodiesel were high cetane number (62), low density (803 kg/m3), low viscosity (3.78 mm2/s), oxidation stability (9 h) and cold filter plugging point (-4 ?C). Hence, S. incrassatulus has potential as a feedstock for the production of excellent quality biodiesel
- …
