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Abstract
We investigate the succinctness problem for conjunctive query
rewritings over OWL 2 QL ontologies of depth 1 and 2 by means of
hypergraph programs computing Boolean functions. Both positive
and negative results are obtained. We show that, over ontologies
of depth 1, conjunctive queries have polynomial-size nonrecursive
datalog rewritings; tree-shaped queries have polynomial positive
existential rewritings; however, in the worst case, positive existen-
tial rewritings can be superpolynomial. Over ontologies of depth
2, positive existential and nonrecursive datalog rewritings of con-
junctive queries can suffer an exponential blowup, while first-order
rewritings can be superpolynomial unless NP ⊆ P/poly. We also
analyse rewritings of tree-shaped queries over arbitrary ontologies
and note that query entailment for such queries is fixed-parameter
tractable.

Categories and Subject Descriptors I.2.4 [Knowledge Represen-
tation Formalisms and Methods]

General Terms Ontology-based data access, description logic.

Keywords First-order query rewriting, succinctness, Boolean cir-
cuit complexity.

1. Introduction
Our concern in this paper is the size of conjunctive query (CQ)
rewritings over OWL 2 QL ontologies. OWL 2 QL 1 is a profile of
the Web Ontology Language OWL 2 designed for ontology-based
data access (OBDA). In first-order logic, any OWL 2 QL ontology
can be given as a finite set of sentences of the form

∀~x
(
ϕ(~x)→ ∃~y ψ(~x, ~y)

)
or ∀~x

(
ϕ(~x) ∧ ϕ′(~x)→ ⊥

)
(1)

where ϕ, ϕ′ and ψ are unary or binary predicates (such sentences
are known as linear tuple-generating dependencies—or tgds—of

1 www.w3.org/TR/owl2-profiles
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arity 2 and disjointness constraints). OWL 2 QL is a (nearly) max-
imal fragment of OWL 2 enjoying first-order rewritability of CQs:
given an ontology T and a CQ q(~x), one can construct a first-
order (FO) formula q′(~x) in the signature of q and T such that
T ,A |= q(~a) iff A |= q′(~a), for any set A of ground atoms
(data) and any tuple ~a of constants in A. Thus, to find certain an-
swers to q(~x) over (T ,A), we can first compute an FO-rewriting
q′(~x) of q and T , and then evaluate it over any given dataA using,
for example, a relational database management system. The ontol-
ogy T in the OBDA paradigm serves as a high-level global schema
providing the user with a convenient query language over possibly
heterogeneous data sources and enriching the data with additional
knowledge. OBDA is widely regarded as a key ingredient of the
new generation of information systems. OWL 2 QL is based on the
DL-Lite family of description logics [4, 12]; other languages sup-
porting first-order rewritability of CQs include linear, sticky and
sticky-join sets of tgds [7, 11].

In practice, rewriting-based OBDA systems2 can only work
efficiently with those CQs and ontologies that have reasonably
short rewritings. This obvious fact raises fundamental succinctness
problems such as: What is the size of FO-rewritings of CQs and
OWL 2 QL ontologies in the worst case? Can rewritings of one type
(say, nonrecursive datalog) be substantially shorter than rewritings
of another type (say, positive existential)? First answers to these
questions were given in [21] which constructed a sequence of CQs
qn and ontologies Tn, for n = 1, 2, . . . , with only exponential pos-
itive existential (PE) and nonrecursive datalog (NDL) rewritings,
and superpolynomial FO-rewritings unless NP ⊆ P/poly; [21] also
showed that NDL-rewritings can be exponentially more succinct
than PE-rewritings, whereas FO-rewritings can be superpolyno-
mially more succinct than PE-rewritings. These prohibitively high
lower bounds are caused by the fact that the chases (canonical mod-
els) for Tn contain full binary trees of depth n and give rise to
exponentially-many homomorphisms from qn to the trees of la-
belled nulls of the chases, all of which have to be reflected in the
rewritings of qn and Tn.

In this paper, we investigate succinctness of CQ rewritings
over ‘shallow’ ontologies whose (polynomial-size) chases are fi-
nite trees of depth 1 or 2 (which do not have chains of more than 1
or 2 labelled nulls). From the theoretical point of view, ontologies
of depth 1 are important because their chases can only generate
linearly-many homomorphisms of CQs to the labelled nulls; on the
other hand, ontologies of finite depth are typical in the real-world

2 See, e.g., QuOnto [30], Presto/Prexto [35, 36], Rapid [14], Ontop [34],
Requiem/Blackout [28, 29], Nyaya [17], Clipper [15] and PURE [25].
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OBDA applications. We obtain both positive and, unexpectedly,
‘negative’ results, which are summarised below:

(i) any CQ and ontology of depth 1 have a polynomial-size NDL-
rewriting (Theorem 9);

(ii) there exist CQs and ontologies of depth 1 whose PE-rewritings
are of superpolynomial size (Theorem 13);

(iii) any tree-shaped CQ and ontology of depth 1 have a PE-
rewriting of polynomial size (Corollary 25);

(iv) the existence of polynomial-size FO-rewritings for all CQs
and ontologies of depth 1 is equivalent to an open problem
‘NL/poly ⊆ NC1?’ (Theorem 14);

(v) there exist CQs and ontologies of depth 2 whose NDL- and PE-
rewritings are of exponential size, while FO-rewritings are of
superpolynomial size unless NP ⊆ P/poly (Theorem 17);

(vi) the existence of polynomial-size FO-rewritings for all CQs and
ontologies of depth 2 with polynomially-many tree witnesses
is equivalent to an open problem ‘NP/poly ⊆ NC1?’ (Theo-
rem 18).

We prove (i)–(vi) by establishing a fundamental connection be-
tween FO-, PE- and NDL-rewritings, on the one hand, and, respec-
tively, formulas, monotone formulas and monotone circuits com-
puting certain monotone Boolean functions, on the other. These
functions are associated with hypergraph representations of the
tree-witness rewritings [24], reflecting possible homomorphisms
of the given CQ to the labelled nulls of the chases for the given
ontology. In particular, hypergraphs H of degree 2 (every vertex
in which belongs to 2 hyperedges) correspond to CQs q and on-
tologies T of depth 1 such that answering q over T and single-
individual data instances amounts to computing the hypergraph
function for H . We show that representing Boolean functions as
hypergraphs of degree 2 is polynomially equivalent to representing
their duals as nondeterministic branching programs (NBPs) [19].
This correspondence and known results on NBPs [20, 33] give
(i), (ii) and (iv) above. To prove (v) and (vi), we observe that hy-
pergraphs of degree 3 are computationally as powerful as nonde-
terministic Boolean circuits (NP/poly) and encode the function
CLIQUEn,k(~e) (graph ~ewith n vertices has a k-clique) as CQs over
ontologies of depth 2. Finally, we show that any tree-shaped CQ q
and ontology T have a PE-rewriting of size O(|T |2 · |q|1+log d),
where d is a parameter related to the number of tree witnesses shar-
ing a common variable. This gives (iii) since d = 2 for ontologies
of depth 1. We also note that the problem ‘T ,A |= q?’, for tree-
shaped Boolean CQs and any T , is fixed-parameter tractable, with
parameter |q| (recall that the problem ‘A |= q?’, for tree-shaped q,
is known to be tractable [37], while ‘T ,A |= q?’ is NP-hard [23]).
All omitted proofs can be found in [22].

As shown in [18], exponential rewritings can be made polyno-
mial at the expense of polynomially-many additional existential
quantifiers over a domain with two constants not necessarily oc-
curring in the CQs; cf. [6]. Intuitively, given q, T and A, the extra
quantifiers guess a homomorphism from q to the chase for (T ,A),
whereas the standard rewritings (without extra constants) represent
such homomorphisms explicitly (likewise non-deterministic finite
automata are exponentially more succinct than deterministic ones,
and quantified Boolean formulas are exponentially more succinct
than Boolean formulas; see also [16] for more details and discus-
sions. A more practical utilisation of additional constants was sug-
gested in the combined approach to OBDA [26], where they are
used to construct a polynomial-size encoding of the chase for the
given ontology and data over which the original CQ is evaluated.
This encoding may introduce (exponentially-many in the worst

case) spurious answers that are eliminated by a special polynomial-
time filtering procedure.

2. The Tree-Witness Rewriting
In this paper, we assume that an ontology, T , is a finite set of tuple-
generating dependencies (tgds) of the form

∀~x
(
ϕ(~x)→ ∃~y

∧
ψi(~x, ~y)

)
, (2)

whereϕ and theψi are unary or binary atoms without constants and
|~x∪~y| ≤ 2. These tgds are expressible via tgds in (1) using fresh bi-
nary predicates, whereas disjointness constraints in (1) do not con-
tribute much to the size of rewritings [10, Theorem 11]. Although
the language given by (1) is slightly different from OWL 2 QL , all
the results obtained here are applicable to OWL 2 QL ontologies
as well; for more details, consult [16]. When writing tgds, we will
omit the universal quantifiers. The size, |T |, of T is the number of
predicate occurrences in T . A data instance, A, is a finite set of
ground atoms. The set of individual constants in A is denoted by
ind(A). Taken together, T and A form the knowledge base (KB)
(T ,A). To simplify notation, we will assume that the data instances
in all KBs are complete in the following sense: for any ground atom
S(~a) with~a from ind(A), if T ,A |= S(~a) then S(~a) ∈ A (see Re-
mark 1 below).

A conjunctive query (CQ) q(~x) is a formula ∃~y ϕ(~x, ~y), where
ϕ is a conjunction of unary or binary atoms S(~z) with ~z ⊆ ~x ∪ ~y
(without loss of generality, we assume that CQs do not contain
constants). A tuple ~a of individual constants from A is a certain
answer to q(~x) over (T ,A) if I |= q(~a) for all models I of T
and A; in this case we write T ,A |= q(~a). If ~x = ∅, the CQ q is
called Boolean; a certain answer to such a q over (T ,A) is ‘yes’
if T ,A |= q and ‘no’ otherwise. Where convenient, we regard a
CQ as the set of its atoms. The size |q| of a CQ q is the number of
symbols in q.

Given a CQ q(~x) and an ontology T , an FO-formula q′(~x)
without constants is called an FO-rewriting of q(~x) and T if, for
any (complete) data instance A and any ~a from ind(A), we have
(T ,A) |= q(~a) iff A |= q′(~a).3 If q′ is a positive existential
formula, we call it a PE-rewriting of q and T . We also consider
rewritings in the form of nonrecursive datalog queries.

Recall [1] that a datalog program, Π, is a finite set of Horn
clauses ∀~x (γ1 ∧ · · · ∧ γm → γ0), where each γi is an atom of
the form P (x1, . . . , xl) with xi ∈ ~x. The atom γ0 is the head of
the clause, and γ1, . . . , γm its body. All variables in the head must
also occur in the body. A predicate P depends on Q in Π if Π has
a clause with P in the head and Q in the body; Π is nonrecursive if
this dependence relation is acyclic. For a nonrecursive program Π
and an atom q′(~x), (Π, q′) is called an NDL-rewriting of q(~x) and
T in case T ,A |= q(~a) iff Π,A |= q′(~a), for any (complete) A
and tuple ~a from ind(A). The size of a rewriting is the number of
symbols in it.

Remark 1. Rewritings over arbitrary data are defined without
stipulating that the data instances in KBs are complete. It is readily
seen [22] that, for any NDL-rewriting (Π, q′) of q and T over
complete data, there is an NDL-rewriting (Π′, q′) over arbitrary
data with |Π′| ≤ |Π| + O(|T |). Similarly, for a PE-rewriting q′

of q and T over complete data, there is a PE-rewriting q′′ over
arbitrary data with |q′′| ≤ O(|q′| · |T |).

We now define an improved version of the tree-witness PE-
rewriting of [24] that will be used to establish links with formulas
and circuits computing certain monotone Boolean functions.

As is well-known [1], for any consistent KB (T ,A), there is
a canonical model (or chase) CT ,A such that T ,A |= q(~a) iff

3 Thus, we do not allow the rewriting from [18] as it contains constants.



CT ,A |= q(~a), for all CQs q(~x) and ~a from ind(A). The domain
of CT ,A consists of ind(A) and the witnesses, or labelled nulls,
introduced by the existential quantifiers in T .

For any formula %(x) of the form S(x), S(x, x), ∃y S(x, y) or
∃y S(y, x), where S is a predicate in T , we denote by C%(a)

T the
canonical model of the KB (T ∪{A(x)→ %(x)}, {A(a)}), where
A is a fresh unary predicate and a a fresh constant (note that such a
canonical model is independent of the data instanceA). We say that
T is of depth k, 1 ≤ k < ω, if at least one of the C%(a)

T contains a
chain of the form R0(w0, w1) . . . Rk−1(wk−1, wk), with not nec-
essarily distinctwi, but none of the C%(a)

T has such a chain of greater
length. For example, the ontology T = {A(x) → ∃y P (x, y)}
is of depth 1, the ontology T ∪ {P (x, y) → ∃z S(y, z)} is of
depth 2, whereas T ′ = T ∪ {P (x, y) → ∃z P (y, z)} is of infi-
nite depth because C∃yP (a,y)

T ′ contains an infinite chain of the form
P (a,w1)P (w1, w2) . . . .

Suppose we are given a CQ q(~x) = ∃~y ϕ(~x, ~y) and an ontology
T . For a pair t = (tr, ti) of disjoint sets of variables in q, with
ti ⊆ ~y and ti 6= ∅ (tr can be empty), set

qt = {S(~z) ∈ q | ~z ⊆ tr ∪ ti and ~z 6⊆ tr }.
We call t = (tr, ti) a tree witness for q and T generated by % if
qt is a minimal subset of q for which there is a homomorphism
h : qt → C

%(a)
T such that tr = h−1(a) and qt contains all atoms of

q with at least one variable from ti. Note that the same tree witness
t = (tr, ti) can be generated by different %. Now, we set

twt(tr) =
∨

t generated by %

∃z
(
%(z) ∧

∧
x∈tr

(x = z)
)
. (3)

The variables in ti do not occur in twt and are called internal. The
length, |twt|, of twt is O(|q| · |T |). Tree witnesses t and t′ are
conflicting if qt ∩ qt′ 6= ∅. Denote by Θq

T the set of tree witnesses
for q and T . A subset Θ ⊆ Θq

T is independent if no pair of
distinct tree witnesses in it is conflicting. Let qΘ =

⋃
t∈Θ qt. The

following PE-formula qtw is called the tree-witness rewriting of q
and T :

qtw(~x) =
∨

Θ⊆Θ
q
T independent

∃~y
( ∧
S(~z)∈q\qΘ

S(~z) ∧
∧
t∈Θ

twt(tr)
)
. (4)

Example 2. Consider an ontology T with the tgds

A1(x)→ ∃y
(
R1(x, y) ∧Q(x, y)

)
,

A2(x)→ ∃y
(
R2(x, y) ∧Q(y, x)

)
and the CQ

q(x1, x2) = ∃y1y2

(
R1(x1, y1) ∧Q(y2, y1) ∧R2(x2, y2)

)
.

The CQ q is shown below alongside CA1(a)
T and CA2(a)

T :

t1

t2

x1

y1

y2

x2

R1 Q R2

A
a

R
2

Q
−

CA2(a)
T

A
a

R
1

Q

CA1(a)
T

There are two tree witnesses, t1 and t2, for q and T with

qt1 = {R1(x1, y1), Q(y2, y1)}, qt2 = {Q(y2, y1), R2(x2, y2)}
(shown above by the dark and light shading, respectively). The
tree witness t1 = (t1r , t

1
i ) with t1r = {x1, y2} and t1i = {y1} is

generated by A1(x), which gives

twt1(x1, y2) = ∃z
(
A1(z) ∧ (x1 = z) ∧ (y2 = z)

)
.

Symmetrically, the tree witness t2 gives

twt2(x2, y1) = ∃z
(
A2(z) ∧ (x2 = z) ∧ (y1 = z)

)
.

As t1 and t2 are conflicting, Θq
T contains three independent sub-

sets: ∅, {t1} and {t2}. Thus, we obtain the following rewriting:

∃y1y2

[
(R1(x1, y1) ∧Q(y2, y1) ∧R2(x2, y2)) ∨

(R2(x2, y2) ∧ twt1) ∨ (R1(x1, y1) ∧ twt2)
]
.

Theorem 3 ([24]). For any complete data instanceA and any tuple
~a from ind(A), we have T ,A |= q(~a) iff A |= qtw(~a).

The number of tree witnesses, |Θq
T |, is bounded by 3|q|. On the

other hand, there is a sequence of queries qn and ontologies Tn
with exponentially many (in |qn|) tree witnesses [24]. The length
of qtw is O(2|Θ

q
T | · |q| · |T |). If any two tree-witnesses for q and

T are compatible—that is, they are either non-conflicting or one
is included in the other—then qtw can be equivalently transformed
into the PE-rewriting

q′tw(~x) = ∃~y
∧

S(~z)∈q

(
S(~z) ∨

∨
t∈Θ

q
T with S(~z)∈qt

twt(tr)
)

of size O(|Θq
T | · |q|

2 · |T |). Our aim now is to investigate transfor-
mations of this kind in the more abstract setting of Boolean func-
tions. In Section 5, we shall see an example of q and T with only
|q|-many tree witnesses any PE-rewriting of which is of superpoly-
nomial size because of multiple combinations of incompatible tree
witnesses.

3. Hypergraph Functions
The tree-witness rewriting qtw gives rise to monotone Boolean
functions we call hypergraph functions. Let H = (V,E) be a
hypergraph with vertices v ∈ V and hyperedges e ∈ E, E ⊆ 2V .
A subset X ⊆ E is independent if e ∩ e′ = ∅, for any distinct
e, e′ ∈ X . Denote by VX the set of vertices occurring in the
hyperedges of X . With each v ∈ V and e ∈ E we associate
propositional variables pv and pe, respectively. The hypergraph
function fH for H is given by the Boolean formula

fH =
∨

X⊆E independent

( ∧
v∈V \VX

pv ∧
∧
e∈X

pe
)
. (5)

By the definition of qtw, every pair q and T gives rise to a hyper-
graphHq

T whose vertices are the atoms of q and hyperedges are the
sets qt, for t ∈ Θq

T : formula (5) forHq
T is the same as rewriting (4)

for q and T with the atoms S(~z) ∈ q and the tree witness formulas
twt treated as propositional variables, pS(~z) and pt, respectively.

Example 4. For q and T from Example 2, the hypergraphHq
T has

3 vertices (one for each atom in the query) and 2 hyperedges (one
for each tree witness):

R1(x1, y1)

Q(y2, y1)

R2(y2, x2)

t1 t2

The hypergraph function of Hq
T is as follows:

fHq
T

= (pR1(x1,y1) ∧ pQ(y2,y1) ∧ pR2(x2,y2)) ∨
(pR2(x2,y2) ∧ pt1) ∨ (pR1(x1,y1) ∧ pt2).

Suppose now that the function fHq
T

is computed by a Boolean
formula χ. By comparing (5) and (4), it is readily seen that the re-
sult of prefixing ∃~y to χ and replacing each pS(~z) in it with S(~z)
and each pt with the formula twt(tr) of length O(|q| · |T |) is a



rewriting of q and T . This gives the first claim in the following
theorem; the second one requires some basic skills in datalog pro-
gramming. (Recall [3] that monotone Boolean formulas and circuits
contain only ∧ and ∨.)

Theorem 5. If fHq
T

is computed by some (monotone) Boolean
formula χ then there exists a (PE-) FO-rewriting of q and T of
size O(|χ| · |q| · |T |).

If fHq
T

is computed by some monotone Boolean circuit C then
there exists an NDL-rewriting of q and T of size O(|C| · |q| · |T |).

Thus, the problem of constructing short rewritings is reducible
to the problem of finding short (monotone) Boolean formulas or
circuits computing the hypergraph functions.

In the next section, we consider hypergraphs as programs
for computing Boolean functions and compare them with the
well-known formalisms of nondeterministic branching programs
(NBPs) and nondeterministic Boolean circuits [3, 19].

4. Hypergraphs, NBPs and Boolean Circuits
Let p1, . . . , pn be propositional variables. An input to a hypergraph
program or an NBP is a vector ~α ∈ {0, 1}n assigning the truth-
value ~α(pi) to each of the pi. We extend this notation to negated
variables and constants by setting ~α(¬pi) = ¬~α(pi), ~α(0) = 0
and ~α(1) = 1.

A hypergraph program (HGP) is a hypergraph H = (V,E) in
which every vertex is labelled with 0, 1, pi or ¬pi. We say that
the hypergraph program H computes a Boolean function f in case,
for any input ~α, we have f(~α) = 1 iff there is an independent
subset in E that covers all zeros—that is, contains all the vertices
in V labelled with 0 under ~α. A hypergraph program is monotone
if there are no negated variables among its vertex labels. The size,
|H|, of a hypergraph program H is the number of hyperedges in it.
We say that a hypergraph (program) H is of degree ≤ n if every
vertex in it belongs to at most n hyperedges; H is of degree n if
every vertex in it belongs to exactly n hyperedges. We denote by
HGP(f) (HGPn(f)) the minimal size of hypergraph programs (of
degree ≤ n) computing f ; HGP+(f) and HGPn+ (f) are used for
the size of monotone programs.

Our first result in this section establishes a link between hy-
pergraph programs of degree ≤ 2 and NBPs. Note [22] that any
(monotone) hypergraph program H of degree ≤ 2 computing a
function f can be converted to a (monotone) hypergraph program
H ′ of degree 2 computing f with |H ′| = |H|+ 3.

Recall [19] that an NBP is a directed multigraph with two
distinguished vertices, s and t, and the arcs labelled with 0, 1, pi or
¬pi (the arcs of the first type have no effect, the arcs of the second
type are called rectifiers, and those of the third and fourth types
contacts). We assume that s has no incoming and t no outgoing
arcs, and note that NBPs may have multiple parallel arcs (with
distinct labels) connecting two nodes. We write v →~α v

′ if there is
a directed path from v to v′ every edge of which is labelled with 1
under ~α. An NBP computes a Boolean function f if f(~α) = 1 just
in case s→~α t. The size of an NBP is the number of arcs in it. An
NBP is monotone if it has no negated variables among its labels.
We denote by NBP(f) (respectively, NBP+(f)) the minimal size
of (monotone) NBPs computing f . As usual, f∗ is the Boolean
function dual to f .

Theorem 6. (i) For any Boolean function f , HGP2(f) and
NBP(¬f) are polynomially related.

(ii) For any monotone Boolean function f , HGP2
+ (f) and

NBP+(f∗) are polynomially related.

Proof. We only prove (i); (ii) is proved by the same argument.
Suppose ¬f is computed by an NBPG. We construct a hypergraph

program H of degree ≤ 2 as follows. For each arc e in G, H has
two vertices e0 and e1, which represent the beginning and the end
of e. The vertex e0 is labelled with the negated label of e in G and
e1 with 1. We also add to H a vertex t labelled with 0. For each
arc e in G, H has an e-hyperedge {e0, e1}. For each vertex v in
G but s and t, H has a v-hyperedge that consists of all vertices
e1, for the arcs e leading to v, and all vertices e0, for the arcs e
leaving v. For the vertex t, H contains a hyperedge that consists of
t and all vertices e1, for the arcs e leading to t. We claim that the
constructed hypergraph program H computes f . Indeed, if s 6→~α t
in G then the following subset of hyperedges is independent and
covers all zeros: all e-hyperedges, for the arcs e reachable from s
and labelled with 1 under ~α, and all v-hyperedges with s 6→~α v.
Conversely, if s →~α t then it can be shown by induction that, for
each arc ei of the path, the ei-hyperedge must be in the cover of
all zeros. Thus, no independent set can cover t, which is labelled
with 0.

Suppose f is computed by a hypergraph programH of degree 2
with hyperedges e1, . . . , ek. We first provide a graph-theoretic
characterisation of independent sets covering all zeros based on the
implication graph [5] (or the chain criterion of [9, Lemma 8.3.1]).
With any hyperedge ei we associate a propositional variable pei
and with an input ~α we associate the following set Φ~α of binary
clauses:

– ¬pei∨¬pej , if ei∩ej 6= ∅ (informally: intersecting hyperedges
cannot be chosen at the same time),

– pei∨pej , if there is v ∈ ei∩ej such that ~α(v) = 0 (informally:
all zeros must be covered; note that all vertices have at most two
incident edges).

By definition, X is an independent set covering all zeros just in
case X = {ei | ~β(pei) = 1}, for some assignment ~β satisfying
Φ~α. Let B~α be a directed graph (V,E~α) with

V =
{
e+
i , e
−
i | 1 ≤ i ≤ k

}
,

E~α =
{

(e+
i , e
−
j ) | ei ∩ ej 6= ∅

}
∪{

(e−i , e
+
j ) | v ∈ ei ∩ ej and ~α(v) = 0

}
.

By [9, Lemma 8.3.1], Φ~α is satisfiable iff there is no ei with a
(directed) cycle going through both e+

i and e−i .
It will be convenient for us to regard theB~α, for assignments ~α,

as a single labelled directed graphB with arcs of the from (e+
i , e
−
j )

labelled with 1 and arcs of the form (e−i , e
+
j ) labelled with ¬v, for

v ∈ ei ∩ ej . It should be clear that B~α has a cycle going through
e+
i and e−i iff e−i →~α e

+
i and e+

i →~α e
−
i in B.

The required NBP contains two distinguished vertices, s and t,
and, for each hyperedge ei, two copies,B+

i andB−i , ofB with arcs
from s to the e−i vertex of B+

i , from the e+
i vertex of B+

i to the e+
i

vertex of B−i and from the e−i vertex of B−i to t; these arcs are
labelled with 1. This construction guarantees that s →~α t iff there
is ei such that B~α contains a cycle going through e+

i and e−i . q

In terms of expressive power, polynomial-size NBPs are a
non-uniform analogue of the complexity class NL; in symbols:
NBP(poly) = NL/poly. Compared to other non-uniform computa-
tional models, (monotone) NBPs sit between (monotone) Boolean
formulas and Boolean circuits [33]. As shown above, a (monotone)
Boolean function f is computable by a polynomial-size (mono-
tone) HGP of degree ≤ 2 iff its dual f∗ is computable by a
polynomial-size (monotone) NBP. (The problem whether f∗ can
be replaced with f is open; a negative solution would give a so-
lution to the open problem 5 from [33].) Thus, (monotone) HGPs
of degree ≤ 2 also sit between (monotone) Boolean formulas and
Boolean circuits. However, (monotone) HGPs of degree ≤ 3 turn



out to be much more powerful than those of degree ≤ 2: we show
now that polynomial-size (monotone) HGPs of degree ≤ 3 can
compute NP-hard Boolean functions.

A function f : {0, 1}n → {0, 1} is computed by a nonde-
terministic Boolean circuit C(~x, ~y), with |~x| = n, if for any
~α ∈ {0, 1}n, we have f(~α) = 1 iff there is ~β ∈ {0, 1}m with
C(~α, ~β) = 1 (the variables in ~y are also known as a certificate). We
say that a nondeterministic circuit C(~x, ~y) is monotone if the nega-
tions in C are only applied to variables in ~y. Denote by NBC(f)
(respectively, NBC+(f)) the minimal size of (monotone) nonde-
terministic Boolean circuits computing f .

Theorem 7. (i) For any Boolean function f , HGP(f), HGP3(f)
and NBC(f) are polynomially related.

(ii) For any monotone Boolean function f , HGP+(f), HGP3
+ (f)

and NBC+(f) are polynomially related.

Proof. It is easy to see that any function f computable by a
(monotone) HGP H can also be computed by a (monotone) non-
deterministic circuit of size poly(|H|). Conversely, suppose f is
computed by a nondeterministic circuit C(~x, ~y). Let g1, . . . , gn be
the nodes of C (including the inputs ~x and ~y). We construct an
HGP of degree ≤ 3 computing f by taking, for each i, a vertex gi
labelled with 0 and a pair of hyperedges ēgi and egi , both contain-
ing gi. No other edge contains gi, and so either ēgi or egi should be
present in any cover of zeros. (Intuitively, if the node gi is positive
then egi belongs to the cover; otherwise, ēgi is there.) To ensure
this property, for each input variable xi, we add a vertex labelled
with ¬xi to exi and a fresh vertex labelled with xi to ēxi . For each
gate gi, we consider three cases.

– If gi = ¬gj then we add a vertex labelled with 1 to egi and ēgj ,
and a vertex labelled with 1 to ēgi and egj .

– If gi = gj ∨ gj′ then we add a vertex labelled with 1 to egj and
ēgi , add a vertex labelled with 1 to egj′ and ēgi ; then, we add
vertices hj and hj′ labelled with 1 to ēgj and ēgj′ , respectively,
and a vertex ui labeled with 0 to ēgi ; finally, we add hyperedges
{hj , ui} and {hj′ , ui}.

– If gi = gj ∧ gj′ then we use the dual construction.

It is readily seen that egi is in the cover iff it contains ēgj in the first
case, and iff it contains at least one of egj and egj′ in the second
case. Finally, we add a vertex labelled with 0 to eg for the output
gate g of C. By induction on the structure of C one can show that,
for each ~α, there is ~β such that C(~α, ~β) = 1 iff the constructed
hypergraph program returns 1 on ~α.

If C is monotone, we remove all vertices labelled with ¬xi.
Then, for an input ~α, there is a cover of zeros in the resulting
hypergraph iff there are ~β and ~α′ ≤ ~α with C(~α′, ~β) = 1. q

Now, we use the developed machinery to investigate the size of
CQ rewritings over ontologies of depth 1 and 2.

5. Rewritings over Ontologies of Depth 1
Theorem 8. For any ontology T of depth 1 and any CQ q, the
hypergraph Hq

T is of degree ≤ 2 and |Θq
T | ≤ |q|.

Proof. We have to show that every atom in q belongs to at most
two qt, t ∈ Θq

T . Let t = (tr, ti) be a tree witness and y ∈ ti. As T
is of depth 1, ti = {y} and tr consists of those variables z in q for
which S(y, z) ∈ q or S(z, y) ∈ q, for some S. So different tree
witnesses have different internal variables y. An atom of the form
A(u) ∈ q is in qt iff u = y. An atom of the form P (u, v) ∈ q is
in qt iff either u = y or v = y. Thus, P (u, v) ∈ q can only be
covered by the tree witness with internal u and by the tree witness
with internal v. q

Theorem 9. Any CQ q and ontology T of depth 1 have a
polynomial-size NDL-rewriting.

Proof. By Theorem 8, the hypergraph Hq
T is of degree≤ 2, and so

there is a polynomial-size HGP of degree ≤ 2 computing fHq
T

. By
Theorem 6, we have a polynomial-size monotone NBP computing
f∗Hq
T

. But then we also have a polynomial-size monotone Boolean
circuit that computes f∗Hq

T
(see, e.g., [33]). By swapping ∧ and

∨ in this circuit, we obtain a polynomial-size monotone circuit
computing fHq

T
. It remains to apply Theorem 5. q

We show next that any hypergraph H of degree 2 is repre-
sentable by means of a CQ qH and an ontology TH of depth 1
in the sense that H is isomorphic to HqH

TH (H ∼= H
qH
TH , in sym-

bols). We can assume that H = (V,E) comes with two fixed maps
i1, i2 : V → E such that i1(v) 6= i2(v), v ∈ i1(v) and v ∈ i2(v),
for any v ∈ V . For each hyperedge e ∈ E, we take an individual
variable ze and denote by ~z the vector of all such variables. For
every vertex v ∈ V , we take a binary predicate Rv and set

qH = ∃~z
∧
v∈V

Rv(zi1(v), zi2(v)).

Let TH be an ontology with the following tgds, for e ∈ E:

Ae(x) → ∃y
[ ∧
v∈V

i1(v)=e

Rv(y, x) ∧
∧
v∈V

i2(v)=e

Rv(x, y)
]
. (6)

Example 10. Consider H = (V,E) with V = {v1, v2, v3, v4}
and E = {e1, e2, e3}, where e1 = {v1, v2, v3}, e2 = {v3, v4},
e3 = {v1, v2, v4}, and assume that

i1 : v1 7→ e1, v2 7→ e3, v3 7→ e1, v4 7→ e2,

i2 : v1 7→ e3, v2 7→ e1, v3 7→ e2, v4 7→ e3.

The hypergraph H is shown in the picture below, where each vk
is represented by an edge, i1(vk) is indicated by the circle-shaped
end of the edge and i2(vk) by the diamond-shaped end of the edge;
the ej are shown as large grey squares:
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In this case,

qH = ∃ze1ze2ze3
(
Rv1(ze1 , ze3) ∧Rv2(ze3 , ze1) ∧

Rv3(ze1 , ze2) ∧Rv4(ze2 , ze3)
)

and the ontology TH consists of the following tgds:

Ae1(x)→ ∃y
[
Rv1(y, x) ∧Rv2(x, y) ∧Rv3(y, x)

]
,

Ae2(x)→ ∃y
[
Rv3(x, y) ∧Rv4(y, x)

]
,

Ae3(x)→ ∃y
[
Rv1(x, y) ∧Rv2(y, x) ∧Rv4(x, y)

]
.

The model CAe1 (a)

TH is shown on the right-hand side of the picture
above. Note that each ze determines the tree witness te in which
qte = {Rv(zi1(v), zi2(v)) | v ∈ e}; te and te

′
are conflicting iff



e ∩ e′ 6= ∅. It follows that H is isomorphic to HqH
TH . In fact, this

example generalises to the following:

Theorem 11. Any hypergraph H of degree 2 is isomorphic to
H

qH
TH , with TH being an ontology of depth 1.

We now show that answering qH over TH and certain single-
individual data instances amounts to computing the Boolean func-
tion fH . Let H = (V,E) be a hypergraph of degree 2 with
V = {v1, . . . , vn} and E = {e1, . . . , em}. We denote by ~α(vi)

the i-th component of ~α ∈ {0, 1}n, by ~β(ej) the j-th component
of ~β ∈ {0, 1}m, and set

A~α,~β = {Rvi(a, a) | ~α(vi) = 1 } ∪ {Aej (a) | ~β(ej) = 1 }.

Theorem 12. Let H = (V,E) be a hypergraph of degree 2. Then
TH ,A~α,~β |= qH iff fH(~α, ~β) = 1, for any ~α ∈ {0, 1}|V | and
~β ∈ {0, 1}|E|.

Proof. (⇐) Let X be an independent subset of E such that∧
v∈V \VX

pv ∧
∧
e∈X pe is true on ~α (for the pv) and ~β (for the

pe). Define h : qH → CTH ,A~α,~β by taking h(ze) = a if e /∈ X

and h(ze) = we, otherwise, where we is the labelled null in the
canonical model CTH ,A~α,~β introduced to witness the existential
quantifier in (6). One can check that h is a homomorphism, and so
TH ,A~α,~β |= qH .

(⇒) Suppose h : qH → CTH ,A~α,~β is a homomorphism. We show
that the set X = {e ∈ E | h(ze) 6= a} is independent. Indeed,
if e, e′ ∈ X and v ∈ e ∩ e′, then h sends one variable of the
Rv-atom to the labelled null we and the other end to we′ , which
is impossible. We claim that fH(~α, ~β) = 1. Indeed, for each
v ∈ V \ VX , h sends both ends of the Rv-atom to a, and so
~α(v) = 1. For each e ∈ X , we must have h(ze) = we because
h(ze) 6= a, and so ~β(e) = 1. It follows that fH(~α, ~β) = 1. q

We are fully equipped now to show that there exist CQs and
ontologies of depth 1 without polynomial-size PE-rewritings:

Theorem 13. There is a sequence of CQs qn and ontologies Tn of
depth 1, both of polynomial size in n, such that any PE-rewriting
of qn and Tn is of size nΩ(logn).

Proof. As shown in [20], there is a sequence fn of monotone
Boolean functions that are computable by polynomial-size mono-
tone NBPs, but any monotone Boolean formulas computing fn are
of size nΩ(logn). In fact, fn checks whether two given vertices
are connected by a path in a given undirected graph. By Theo-
rem 6, there is a sequence of polynomial-size monotone HGPs H ′n
of degree 2 computing f∗n . By applying Theorem 11 to the hyper-
graph Hn of H ′n, we obtain a sequence of qn and Tn such that
Hn ∼= H

qn
Tn . We show now that any PE-rewriting q′n of qn and Tn

can be transformed to a monotone Boolean formula computing fn
and having size ≤ |q′n|.

To define it, we eliminate the quantifiers in q′n in the following
way: take a constant a and replace every subformula of the form
∃xψ(x) in q′n with ψ(a), repeating this operation as many times
as possible. The resulting formula q′′n is built from atoms of the
form Ae(a), Rv(a, a) and Se(a, a) using ∧ and ∨. For every data
instance A with a single individual a, we have Tn,A |= qn iff
A |= q′′n. Let χn be the result of replacing Se(a, a) in q′′n with ⊥,
Ae(a) with pe and Rv(a, a) with pv . Clearly, |χn| ≤ |q′n|. By the
definition of A~α,~β and Theorem 12, we have

χn(~α, ~β) = 1 iff A~α,~β |= q′′n iff

Tn,A~α,~β |= qn iff fHn(~α, ~β) = 1.

As H ′n computes f∗n , we can obtain f∗n from fHn by replacing
each pe with 1 and each pv with the label of v in H ′n. The same
substitution in χn (with > and ⊥ in place of 1 and 0) gives a
monotone formula that computes f∗n . By swapping ∨ and ∧ in
it, we obtain a monotone formula χ′n computing fn. It remains to
recall that |q′n| ≥ |χ′n| = nΩ(logn). q

It may be of interest to note that the function fn in the proof
above is in the complexity class L. The algorithm computing fn by
querying the NDL-rewriting of Theorem 9 over single-individual
data instances runs in polynomial time; the algorithm querying any
PE-rewriting to compute fn requires, by Theorem 13, superpoly-
nomial time.

As reachability in directed graphs is NL/poly-complete under
NC1-reductions and NL = CONL, the argument in the proof of
Theorem 13 shows that the existence of short FO-rewritings of
CQs and ontologies of depth 1 is equivalent to a well-known open
problem in computational complexity:

Theorem 14. There exist polynomial-size FO-rewritings for all
CQs and ontologies of depth 1 iff all functions in the class NL/poly
are computed by polynomial-size Boolean formulas, that is, iff
NL/poly ⊆ NC1.

As we shall see in Section 7, tree-shaped CQs and ontologies of
depth 1 always have polynomial-size PE-rewritings.

6. Rewritings over Ontologies of Depth 2
Our next aim is to show that CQs and ontologies of depth 2 can
compute the NP-complete function checking whether a graph with
n vertices has a k-clique. We remind the reader (see, e.g., [3]
for details) that the monotone Boolean function CLIQUEn,k(~e) of
n(n − 1)/2 variables ejj′ , 1 ≤ j < j′ ≤ n, returns 1 iff the
graph with vertices {1, . . . , n} and edges {{j, j′} | ejj′ = 1}
contains a k-clique. A series of papers, started by Razborov’s [32],
gave an exponential lower bound for the size of monotone circuits
computing CLIQUEn,k: 2Ω(

√
k) for k ≤ 1

4
(n/ logn)2/3 [2]. For

monotone formulas, an even better lower bound is known: 2Ω(k)

for k = 2n/3 [31].
We first construct a monotone HGP computing CLIQUEn,k and

then use the intuition behind the construction to encode CLIQUEn,k
via a Boolean CQ qn,k and an ontology Tn,k of depth 2 and
polynomial size. As a consequence, any PE- or NDL-rewriting of
qn,k and Tn,k is of exponential size, while any FO-rewriting is
superpolynomial unless NP ⊆ P/poly.

Given n and k, let Hn,k be a monotone HGP with vertices

– vi labelled with 0, for 1 ≤ i ≤ k,

– wjj′ labelled with ejj′ , for 1 ≤ j < j′ ≤ n,

– ujj′ and uj′j labelled with 1, for 1 ≤ j < j′ ≤ n,

and hyperedges

f ij = {vi} ∪ {ujj′ | j′ 6= j} (1 ≤ i ≤ k and 1 ≤ j ≤ n),

hjj
′
={wjj′ , ujj′} and hj

′j ={wjj′ , uj′j} (1 ≤ j < j′ ≤ n).

Informally, thewjj′ represent the edges of the complete graph with
n vertices; they can be turned ‘on’ or ‘off’ by means of the variables
ejj′ . The vertex ujj′ together with the hyperedge hjj

′
represent the

‘half’ of the edge connecting j and j′ that is adjacent to j; the other
‘half’ is represented by uj′j and hj

′j . The vertices vi represent a
k-clique and the edge f ij corresponds to the choice of the vertex j
of the graph as the ith element of the clique. The hypergraph H4,2

is shown below:
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Theorem 15. The HGP Hn,k computes CLIQUEn,k.

Proof. We show that, for each ~e ∈ {0, 1}n(n−1)/2, there is an
independent set X of hyperedges covering all zeros in Hn,k iff
CLIQUEn,k(~e) = 1.

(⇐) Let function λ : {1, . . . , k} → {1, . . . , n} be such that
C = {λ(i) | 1 ≤ i ≤ k} is a k-clique in the graph given by ~e.
Then

X = {f iλ(i) | 1 ≤ i ≤ k} ∪ {hjj
′
| j /∈ C, j′ ∈ C} ∪

{hjj
′
| j, j′ /∈ C and j < j′}

is independent and covers all zeros in Hn,k under ~e. Indeed, X
is independent because, in every hjj

′
∈ X , the index j does not

belong to C. By definition, each f iλ(i) covers vi, for 1 ≤ i ≤ k.
Thus, it remains to show that any wjj′ with ejj′ = 0 (that is, the
edge {j, j′} belongs to the complement of G) is covered by some
hyperedge. All edges of the complement of G can be divided into
two groups: those that are adjacent toC, and those that are not. The
wjj′ that correspond to the edges of the former group are covered
by the hjj

′
from the middle disjunct of X , where j corresponds to

the end of the edge {j, j′} that is not C. To cover wjj′ of the latter
group, take hjj

′
from the last disjunct of X .

(⇒) Suppose that X is an independent set which covers all zeros
labelling the vertices of Hn,k, for an input ~e. The vertex vi is
labelled with 0, and so there is λ(i) such that f iλ(i) ∈ X . We claim
that C = {λ(i) | 1 ≤ i ≤ k} is a k-clique in the graph given by ~e.
Indeed, suppose that the graph has no edge between some vertices
j, j′ ∈ C, that is, ejj′ = 0 for j < j′. Sincewjj′ is labelled with 0,
it must be covered by a hyperedge in X , which can only be either
hjj
′

or hj
′j (see the picture above). But hjj

′
intersects fλ

−1(j)j

and hj
′j intersects fλ

−1(j′)j′ , which is a contradiction. q

We are now in a position to define Tn,k of depth 2 and qn,k,
both of polynomial size in n, that can compute CLIQUEn,k. Let
qn,k contain the following atoms (all variables are quantified):

Tij(vi, zij) for 1 ≤ i ≤ k, 1 ≤ j ≤ n,
Pjj′(wjj′ , xjj′), Pj′j(wjj′ , xj′j) for 1 ≤ j < j′ ≤ n,
Q(ujj′ , xjj′), U(ujj′ , zij) for 1 ≤ j 6= j′ ≤ n

and 1 ≤ i ≤ k.

The picture below illustrates the fragments of qn,k centred in each
variable of the form zij and xjj′ (the fragment centred in xj′j is
similar to that of xjj′ except the index of the wjj′ ):
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The ontology Tn,k mimics the arrangement of atoms in the layers
depicted above and contains the following tgds, where 1 ≤ i ≤ k
and 1 ≤ j 6= j′ ≤ n,

Aij(x)→ ∃y
[ ∧
j′′ 6=j

Tij′′(y, x) ∧ U(y, x) ∧Q(y, x) ∧A′ij(y)
]
,

A′ij(x)→ ∃y
[
Tij(x, y) ∧ U(x, y)

]
,

Bjj′(x)→ ∃y
[
Pj′j(y, x) ∧ U(y, x) ∧B′jj′(y)

]
,

B′jj′(x)→ ∃y
[
Pjj′(x, y) ∧Q(x, y)

]
.

The canonical models CAij(a)

Tn,k and C
Bjj′ (a)

Tn,k are also illustrated in
picture above with the horizontal dashed lines showing possible
ways of embedding the fragments of qn,k into them. These embed-
dings give rise to the following tree witnesses:

– tij = (tijr , t
ij
i ) generated by Aij(x), for 1 ≤ i ≤ k and

1 ≤ j ≤ n, where

tijr = {zij′ , xjj′ | 1 ≤ j′ ≤ n, j′ 6= j} ∪
{zi′j | 1 ≤ i′ ≤ k, i 6= i′},

tiji = {vi, zij} ∪ {ujj′ | 1 ≤ j′ ≤ n, j′ 6= j};
– sjj

′
= (sjj

′
r , sjj

′

i ) and sj
′j = (sj

′j
r , sj

′j
i ), generated by

Bjj′(x) and Bj′j(x), respectively, for 1 ≤ j < j′ ≤ n,
where

sjj
′

r = {xj′j} ∪ {zij | 1 ≤ i ≤ k},
sjj
′

i = {wjj′ , ujj′ , xjj′},

sj
′j

r = {xjj′} ∪ {zij′ | 1 ≤ i ≤ k},
sj
′j

i = {wjj′ , uj′j , xj′j}.

The tree witnesses tij , sjj
′

and sj
′j are uniquely determined by

their most remote (from the root) variables, zij , xjj′ and xj′j ,
respectively, and correspond to the hyperedges f ij , hjj

′
, hj

′j of
Hn,k; their internal variables of the form vi, wjj′ and ujj′ corre-
spond to the vertices in the respective hyperedge.

For a vector ~e encoding a graph with n vertices, letA~e be a data
instance with one individual a and the following atoms:

Q(a, a), U(a, a), Aij(a), for 1 ≤ i ≤ k and 1 ≤ j ≤ n,
Pjj′(a, a) and Pj′j(a, a), for 1 ≤ j < j′ ≤ n with ejj′ = 1.

Lemma 16. Tn,k,A~e |= qn,k iff CLIQUEn,k(~e) = 1.

Proof. (⇒) Suppose Tn,k,A~e |= qn,k. Then there is a homo-
morphism g from qn,k to the canonical model C of (Tn,k,A~e).
Since the only points of C that belong to ∃y Tij(x, y) are of the
form cij (in the picture above) and qn,k contains atoms of the
form Tij(vi, zij), there is λ : {1, . . . , k} → {1, . . . , n} such that
g(vi) = ciλ(i). We claim that C = {λ(i) | 1 ≤ i ≤ k} is a
k-clique in the graph given by ~e.



We first show that λ is injective. Suppose to the contrary that
λ(i) = λ(i′) = j, for i 6= i′. Since qn,k contains Tij(vi, zij)
and Ti′j(vi′ , zi′j), we have g(zij) = c′ij and g(zi′j) = c′i′j .
Take j′ 6= j. Since U(ujj′ , zij), U(ujj′ , zi′j) ∈ qn,k, we obtain
g(ujj′) = cij and g(ujj′) = ci′j , contrary to i 6= i′.

Next, we show that ejj′ = 1, for all j, j′ ∈ C with j < j′. Since
U(ujj′ , zij) is in qn,k, we have g(ujj′) = cij , and so g(xjj′) = a.
Similarly, we also have g(uj′j) = ci′j′ and g(xj′j) = a. Then,
since qn,k contains both Pjj′(wjj′ , xjj′) and Pj′j(wjj′ , xj′j) and
C contains no pair of points in both Pjj′ and Pj′j apart from (a, a),
we obtain ejj′ = 1 whenever g(xjj′) = g(xj′j) = a, as shown in
the picture below:

wjj′
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P
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(⇐) Suppose λ : {1, . . . , k} → {1, . . . , n} is a k-clique. We
construct a homomorphism g from qn,k to the canonical model
of (Tn,k,A~e) relying upon the cover X constructed for Hn,k in
the proof of Theorem 15, (⇐). The internal variables of the tree
witnesses from X are sent to labelled nulls, and all other points are
sent to a. It follows that Tn,k,A~e |= qn,k. q

Theorem 17. There exists a sequence of CQs qn and ontologies Tn
of depth 2 any PE- and NDL-rewritings of which are of exponential
size, while any FO-rewriting is of superpolynomial size unless
NP ⊆ P/poly.

Proof. Given a PE-, FO- or NDL-rewriting q′n,k of qn,k and Tn,k,
we show how to construct, respectively, a monotone Boolean for-
mula, a Boolean formula or a monotone Boolean circuit for the
function CLIQUEn,k of size |q′n,k|.

Suppose q′n,k is a PE-rewriting of qn,k and Tn,k. We eliminate
the quantifiers in q′n,k by replacing any ∃xψ(x) in q′n,k with ψ(a),
any Pjj′(a, a) and Pj′j(a, a) with ejj′ , any Tij(a, a), A′ij(a)
and B′jj′(a) with 0, and U(a, a), Q(a, a), Aij(a) and Bjj′(a)
with 1. One can check that the resulting monotone Boolean formula
computes CLIQUEn,k. If q′n,k is an FO-rewriting, then we also
replace ∀xψ(x) with ψ(a).

If (Π, q′n,k) is an NDL-rewriting of qn,k, we replace all the
individual variables in Π with a and then perform the replacement
described above. Denote the resulting propositional NDL-program
by Π′. The program Π′ can now be transformed into a monotone
Boolean circuit computing CLIQUEn,k: for every (propositional)
variable p occurring in the head of a clause in Π′, we introduce an
∨-gate whose output is p and inputs are the bodies of the clauses
with the head p; and for each such body, we introduce an ∧-gate
whose inputs are the propositional variables in the body.

Now Theorem 17 follows from the lower bounds for monotone
Boolean circuits and formulas computing CLIQUEn,k given at the
beginning of this section. q

As the function CLIQUEn,k is known to be NP/poly-complete
with respect to NC1-reductions, we also obtain:

Theorem 18. There exist polynomial-size FO-rewritings for all
CQs and ontologies of depth 2 with polynomially-many tree wit-
nesses iff all functions in NP/poly are computed by polynomial-
size formulas, that is, iff NP/poly ⊆ NC1.

7. Rewritings of Tree-Shaped CQs
A CQ is said to be tree-shaped if its Gaifman graph is a tree. It is
well known [13, 37] that tree-shaped CQs (or, more generally, CQs
of bounded treewidth) can be evaluated over plain data instances
in polynomial time. In contrast, the evaluation of arbitrary CQs
is NP-complete for combined complexity and W [1]-complete for
parameterised complexity. In this section, we consider tree-shaped
CQs over ontologies.

At first sight, we do not gain much by focusing on tree-shaped
CQs: answering such CQs over ontologies is NP-complete for
combined complexity [23], while their PE- and NDL-rewritings
can suffer an exponential blowup [21]. However, by examining the
tree-witness rewriting (4), we see that the twt formula (3) defines
a predicate over the data that can be computed in linear time. It
follows that, for a tree-shaped q, every disjunct of (4) can also be
regarded as a tree-shaped CQ of size ≤ |q|. So, bearing in mind
that |Θq

T | ≤ 3|q|, we obtain the following:

Theorem 19. Given a tree-shaped CQ q(~x), an ontology T , a
data instance A and a tuple ~a from ind(A), the problem of de-
ciding whether T ,A |= q(~a) is fixed-parameter tractable, with
parameter |q|.

Furthermore, if each variable in a tree-shaped CQ is covered by
a ‘small’ number of tree witnesses then we can obtain polynomial-
size PE- or NDL-rewritings.

Example 20. Consider the following ontology:

T =
{
Ai(x)→ ∃y

(
Ri(x, y) ∧Ri+1(y, x)

)
| 1 ≤ i ≤ 3

}
,

and the following CQ:

q = ∃y1 . . . y5

∧
1≤i≤4

Ri(yi, yi+1)

illustrated in the picture below:

q1 q2

y1 y2

y3

y4 y5

R1

R
2 R

3

R4
A2

R
2

R
− 3

We construct a PE-rewriting q† of q and T recursively by splitting
q into smaller subqueries. Suppose (T ,A) |= q, for someA. Then
there is a homomorphism h : q → CT ,A. Consider the ‘central’
variable y3 dividing q in half. If h(y3) is in the data part of CT ,A
then y3 behaves like a free variable in q. Since q is tree-shaped,
we can then proceed by constructing PE-rewritings, q†1(y3) and
q†2(y3), for the subqueries

q1(y3) = ∃y1y2 (R1(y1, y2) ∧R2(y2, y3)),

q2(y3) = ∃y4y5 (R3(y3, y4) ∧R4(y4, y5)).

If h(y3) is a labelled null, then y3 must be an internal point of
some tree witness for q and T . We have only one such tree witness,
t = (tr, ti), generated by A2(x) with tr = {y2, y4}, ti = {y3} and
qt = {R2(y2, y3), R3(y3, y4)} (shaded in the picture above). But
then h(y2) = h(y4) and this element is in the data part of CT ,A.
So, we need PE-rewritings, q†3(y2) and q†4(y4), of the remaining
fragments of q:

q3(y2) = ∃y1 R1(y1, y2), q4(y4) = ∃y5 R4(y4, y5).



If the required rewritings q†i , 1 ≤ i ≤ 4, are constructed then we
obtain a PE-rewriting q† of q and T by taking

q† = ∃y3

(
q†1(y3) ∧ q†2(y3)

)
∨

∃y2y4

(
A2(y2) ∧ (y2 = y4) ∧ q†3(y2) ∧ q†4(y4)

)
.

We analyse q1, q2, q3 and q4 in the same way and obtain

q†1(y3) = ∃y2

(
q†3(y2)∧R2(y2, y3)

)
∨ ∃y1

(
A1(y3)∧(y1 =y3)

)
,

q†2(y3) = ∃y4

(
R3(y3, y4)∧q†4(y4)

)
∨ ∃y5

(
A3(y3)∧(y5 =y3)

)
,

q†3(y2) and q†4(y4) equal to q3(y2) and q4(y4), respectively.

We now give a general definition of a PE-rewriting obtained by
the strategy ‘divide and rewrite’ and applicable to any (not nec-
essarily tree-shaped) CQ. Let q(~x) = ∃~y ϕ(~x, ~y) and an ontol-
ogy T be given. We recursively define a PE-query q†(~x) as fol-
lows. Take the finest partition of ∃~y ϕ(~x, ~y) into a conjunction∧
j ∃~yj ϕj(~x, ~yj) such that every atom containing some y ∈ ~yj

belongs to the same conjunct ϕj(~x, ~yj). (Informally, the Gaifman
graph of ϕ is cut along the answer variables ~x.) By definition, the
set of tree witnesses for ∃~y ϕ(~x, ~y) and T is the disjoint union of
the sets of tree witnesses for the ∃~yj ϕj(~x, ~yj) and T . Then we set
(∃~y ϕ(~x, ~y))† =

∧
j ψj , where ψj is ϕj(~x) in case ~yj is empty;

otherwise, we choose a variable z in ~yj and define ψj to be the
formula

∃z
(
∃ [~yj \ {z}]ϕj(~x, ~yj)

)† ∨∨
t a tree witness for ∃~yj ϕj(~x,~yj) and T

such that t=(tr,ti) and z∈ti

∃~yj,t
((
∃ [~yj \ ~yj,t]ϕj,t(~x, ~yj)

)† ∧ twt(tr)
)
,

where ~yj,t = ~yj ∩ tr contains the variables in ~yj that occur among
tr, the quantifiers ∃ [~yj \ {z}] and ∃ [~yj \ ~yj,t] contain all variables
in ~yj but z and ~yj,t, respectively, and ϕj,t consists of all the atoms
of ϕj except those in qt. Note that the variables in ti (in particular,
z) do not occur in the disjunct for t (and so can be removed from
the respective quantifier). Intuitively, the first disjunct represents
the situation where z is mapped to a data individual and treated as
a free variable in the rewriting of ϕj . The other disjuncts reflect the
cases where z is mapped to a labelled null, and so z is an internal
variable of a tree witness t = (tr, ti) for ∃~yj ϕj(~x, ~yj) and T . As
the variables in tr must be mapped to data individuals, this only
leaves the set of atoms ϕj,t with existentially quantified ~yj \~yj,t for
further rewriting. The existentially quantified variables in each of
the disjuncts do not contain z, and so our recursion is well-founded.
The proof of the following theorem is straightforward (remember
that all our rewritings in this paper are over complete data):

Theorem 21. For any CQ q(x) and ontology T , q†(~x) is a PE-
rewriting of q and T (over complete data).

The exact form of the rewriting q† depends on the choice of
the variables z. We now consider two strategies for choosing these
variables in the case of tree-shaped CQs. Let

dqT = 1 + max
z∈~y

∣∣{t = (tr, ti) ∈ Θq
T | z ∈ ti}

∣∣.
We call dqT the tree-witness degree of q and T . For example, the
tree-witness degree of any CQ and ontology of depth 1 is at most 2,
as observed in the proof of Theorem 8. In general, however, it can
only be bounded by 1 + |Θq

T |.
Given a tree-shaped CQ q(~x) = ∃~y ϕ(~x, ~y), we pick some

variable as its root and define a partial order � on the variables
of q by taking z � z′ iff z′ occurs in the subtree of q rooted in z.
The strategy used in [8] chooses the smallest z with respect to �.
Since the number of distinct subtrees of q is bounded by |q| and

NDL programs allow for structure sharing, this strategy yields an
NDL-rewriting of size |T | · |q| · dqT :

Corollary 22 ([8]). Any tree-shaped CQ and any ontology with
polynomially-many tree-witnesses have a polynomial-size NDL-
rewriting.

As the depth of recursion in the rewiring process with the above
strategy is bounded by |q|, we can only obtain a PE-rewriting
of exponential size in |q|. However, if we adopt the strategy of
choosing z that splits the graph of each ϕj in half, then the depth of
recursion does not exceed log |q|, and so the resulting PE-rewriting
is of polynomial size for q and T of bounded tree-witness degree.
This strategy is based on the following fact:

Proposition 23. Any tree T = (V,E) contains a vertex v ∈ V
such that each connected component obtained by removing v from
T has at most |V |/2 vertices.

As a consequence, we obtain:

Theorem 24. For any tree-shaped CQ q and any ontology T , there
is a PE-rewriting of size |T | · |q|1+log d

q
T (over complete data).

Proof. Denote by F (n) the maximal size of p†, for a subquery p
of the CQ q with at most n atoms. We show by induction on n
that F (n) ≤ |T | · n1+log d, where d = dqT . By definition, for
each component pj of the finest partition of p, the length of its
contribution to p† does not exceed

F (nj) +

d−1∑
i=1

(F (nj −mji) + |T | ·mji),

where nj is the number of atoms in pj and mji is the number of
atoms in the ith tree witness with z ∈ ti, 1 ≤ mji ≤ nj . By the
induction hypothesis, the length of the contribution of pj does not
exceed

|T | · n1+log d
j + |T | ·

d−1∑
i=1

(
(nj −mji)

1+log d +mji

)
≤

|T | ·
(
n1+log d
j + (d− 1) · n1+log d

j

)
= |T | · d · n1+log d

j .

By Proposition 23, we can choose z (at the preceding step) so that
p with n atoms is split into components p1, . . . ,pk each of which
has nj ≤ n/2 atoms (by definition,

∑k
j=1 nj = n). This gives

F (n) ≤ |T | · d ·
k∑
j=1

(
(n/2)log d · nj

)
≤ |T | · n1+log d

as required. q

Corollary 25. Any tree-shaped CQ q and ontology T of depth 1
have a PE-rewriting of size |T | · |q|2 (over complete data).

8. Conclusions
We have established a fundamental link between FO-rewritings
of CQs over OWL 2 QL ontologies of depth 1 and 2 and—via
the hypergraph functions and programs—classical computational
models for Boolean functions. This link allowed us to apply the
Boolean complexity theory and obtain both polynomial upper and
exponential (or superpolynomial) lower bounds for the size of
rewritings. It is to be noted that the high lower bounds were proved
for CQs and ontologies with polynomially-many tree witnesses and
polynomial-size chases.

A few challenging important questions remain open:

(i) Are all hypergraphs representable as subgraphs of some tree-
witness hypergraphs?



(ii) Do all tree-shaped CQs have polynomial-size rewritings over
ontologies of depth 2 (more generally, of bounded depth)?

(iii) What is the size of CQ rewritings over a fixed ontology in the
worst case?

(The last question is related to the non-uniform approach to the
complexity of query answering in OBDA on the level of individual
ontologies [27].)
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[15] T. Eiter, M. Ortiz, M. Šimkus, T.-K. Tran, and G. Xiao. Query
rewriting for Horn-SHIQ plus rules. In Proc. of AAAI. AAAI Press,
2012.

[16] G. Gottlob, S. Kikot, R. Kontchakov, V. Podolskii, T. Schwentick, and
M. Zakharyaschev. The price of query rewriting in ontology-based
data access. Artif. Intell. 2014.

[17] G. Gottlob, G. Orsi, and A. Pieris. Ontological queries: Rewriting and
optimization. In Proc. of ICDE, pages 2–13. IEEE Computer Society,
2011.

[18] G. Gottlob and T. Schwentick. Rewriting ontological queries into
small nonrecursive datalog programs. In Proc. of KR. AAAI Press,
2012.

[19] S. Jukna. Boolean Function Complexity — Advances and Frontiers,
volume 27 of Algorithms and Combinatorics. Springer, 2012.

[20] M. Karchmer and A. Wigderson. Monotone circuits for connectivity
require super-logarithmic depth. In Proc. of STOC, pages 539–550.
ACM, 1988.

[21] S. Kikot, R. Kontchakov, V. Podolskii, and M. Zakharyaschev. Expo-
nential lower bounds and separation for query rewriting. In Proc. of
ICALP, vol. 7392 of LNCS, pages 263–274. Springer, 2012.

[22] S. Kikot, R. Kontchakov, V. Podolskii, and M. Zakharyaschev. On
the succinctness of query rewriting over OWL 2 QL ontologies with
shallow chases. CoRR, abs/1401.4420, 2014.

[23] S. Kikot, R. Kontchakov, and M. Zakharyaschev. On (in)tractability of
OBDA with OWL 2 QL. In Proc. of DL, vol. 745 of CEUR-WS, 2011.

[24] S. Kikot, R. Kontchakov, and M. Zakharyaschev. Conjunctive query
answering with OWL 2 QL. In Proc. of KR. AAAI Press, 2012.

[25] M. König, M. Leclère, M.-L. Mugnier, and M. Thomazo. On the
exploration of the query rewriting space with existential rules. In Proc.
of RR, vol. 7994 of LNCS, pages 123–137. Springer, 2013.

[26] C. Lutz, I. Seylan, D. Toman, and F. Wolter. The combined approach
to OBDA: taming role hierarchies using filters. In Proc. of ISWC,
vol. 8218 of LNCS, pages 314–330. Springer, 2013.

[27] C. Lutz and F. Wolter. Non-uniform data complexity of query answer-
ing in description logics. In Proc. of KR. AAAI Press, 2012.
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[29] H. Pérez-Urbina, E. Rodrı́guez-Dı́az, M. Grove, G. Konstantinidis, and
E. Sirin. Evaluation of query rewriting approaches for OWL 2. In
Proc. of SSWS+HPCSW, vol. 943 of CEUR-WS, 2012.

[30] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and
R. Rosati. Linking data to ontologies. J. on Data Semantics, X:133–
173, 2008.

[31] R. Raz and A. Wigderson. Monotone circuits for matching require
linear depth. J. ACM, 39(3):736–744, 1992.

[32] A. Razborov. Lower bounds for the monotone complexity of some
Boolean functions. Dokl. Akad. Nauk SSSR, 281(4):798–801, 1985.

[33] A. Razborov. Lower bounds for deterministic and nondeterministic
branching programs. In Proc. of FCT, vol. 529 of LNCS, pages 47–60.
Springer, 1991.

[34] M. Rodrı́guez-Muro, R. Kontchakov, and M. Zakharyaschev.
Ontology-based data access: Ontop of databases. In Proc. of ISWC,
vol. 8218 of LNCS, pages 558–573. Springer, 2013.

[35] R. Rosati. Prexto: Query rewriting under extensional constraints in
DL-Lite. In Proc. of ESWC, vol. 7295 of LNCS, pages 360–374.
Springer, 2012.

[36] R. Rosati and A. Almatelli. Improving query answering over DL-Lite
ontologies. In Proc. of KR. AAAI Press, 2010.

[37] M. Yannakakis. Algorithms for acyclic database schemes. In Proc. of
VLDB, pages 82–94. IEEE Computer Society, 1981.


