78 research outputs found

    Functional Neuromuscular Junctions Formed by Embryonic Stem Cell-Derived Motor Neurons

    Get PDF
    A key objective of stem cell biology is to create physiologically relevant cells suitable for modeling disease pathologies in vitro. Much progress towards this goal has been made in the area of motor neuron (MN) disease through the development of methods to direct spinal MN formation from both embryonic and induced pluripotent stem cells. Previous studies have characterized these neurons with respect to their molecular and intrinsic functional properties. However, the synaptic activity of stem cell-derived MNs remains less well defined. In this study, we report the development of low-density co-culture conditions that encourage the formation of active neuromuscular synapses between stem cell-derived MNs and muscle cells in vitro. Fluorescence microscopy reveals the expression of numerous synaptic proteins at these contacts, while dual patch clamp recording detects both spontaneous and multi-quantal evoked synaptic responses similar to those observed in vivo. Together, these findings demonstrate that stem cell-derived MNs innervate muscle cells in a functionally relevant manner. This dual recording approach further offers a sensitive and quantitative assay platform to probe disorders of synaptic dysfunction associated with MN disease

    Active Zone Protein Bassoon Co-Localizes with Presynaptic Calcium Channel, Modifies Channel Function, and Recovers from Aging Related Loss by Exercise

    Get PDF
    The P/Q-type voltage-dependent calcium channels (VDCCs) are essential for synaptic transmission at adult mammalian neuromuscular junctions (NMJs); however, the subsynaptic location of VDCCs relative to active zones in rodent NMJs, and the functional modification of VDCCs by the interaction with active zone protein Bassoon remain unknown. Here, we show that P/Q-type VDCCs distribute in a punctate pattern within the NMJ presynaptic terminals and align in three dimensions with Bassoon. This distribution pattern of P/Q-type VDCCs and Bassoon in NMJs is consistent with our previous study demonstrating the binding of VDCCs and Bassoon. In addition, we now show that the interaction between P/Q-type VDCCs and Bassoon significantly suppressed the inactivation property of P/Q-type VDCCs, suggesting that the Ca2+ influx may be augmented by Bassoon for efficient synaptic transmission at NMJs. However, presynaptic Bassoon level was significantly attenuated in aged rat NMJs, which suggests an attenuation of VDCC function due to a lack of this interaction between VDCC and Bassoon. Importantly, the decreased Bassoon level in aged NMJs was ameliorated by isometric strength training of muscles for two months. The training increased Bassoon immunoreactivity in NMJs without affecting synapse size. These results demonstrated that the P/Q-type VDCCs preferentially accumulate at NMJ active zones and play essential role in synaptic transmission in conjunction with the active zone protein Bassoon. This molecular mechanism becomes impaired by aging, which suggests altered synaptic function in aged NMJs. However, Bassoon level in aged NMJs can be improved by muscle exercise

    The ineffectiveness of entrepreneurship policy:Is policy formulation to blame?

    Get PDF
    Entrepreneurship policy has been criticised for its lack of effectiveness. Some scholars, such as Scott Shane in this journal, have argued that it is ‘bad’ public policy. But this simply begs the question why the legislative process should generate bad policy? To answer this question this study examines the UK’s enterprise policy process in the 2009–2010 period. It suggests that a key factor for the ineffectiveness of policy is how it is formulated. This stage in the policy process is seldom visible to those outside of government departments and has been largely ignored by prior research. The application of institutional theory provides a detailed theoretical understanding of the actors and the process by which enterprise policy is formulated. We find that by opening up the ‘black box’ of enterprise policy formulation, the process is dominated by powerful actors who govern the process with their interests

    Update on hypertrophic cardiomyopathy and a guide to the guidelines

    Get PDF
    Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiovascular disorder, affecting 1 in 500 individuals worldwide. Existing epidemiological studies might have underestimated the prevalence of HCM, however, owing to limited inclusion of individuals with early, incomplete phenotypic expression. Clinical manifestations of HCM include diastolic dysfunction, left ventricular outflow tract obstruction, ischaemia, atrial fibrillation, abnormal vascular responses and, in 5% of patients, progression to a 'burnt-out' phase characterized by systolic impairment. Disease-related mortality is most often attributable to sudden cardiac death, heart failure, and embolic stroke. The majority of individuals with HCM, however, have normal or near-normal life expectancy, owing in part to contemporary management strategies including family screening, risk stratification, thromboembolic prophylaxis, and implantation of cardioverter-defibrillators. The clinical guidelines for HCM issued by the ACC Foundation/AHA and the ESC facilitate evaluation and management of the disease. In this Review, we aim to assist clinicians in navigating the guidelines by highlighting important updates, current gaps in knowledge, differences in the recommendations, and challenges in implementing them, including aids and pitfalls in clinical and pathological evaluation. We also discuss the advances in genetics, imaging, and molecular research that will underpin future developments in diagnosis and therapy for HCM

    Genetically elevated high-density lipoprotein cholesterol through the cholesteryl ester transfer protein gene does not associate with risk of Alzheimer's disease

    Get PDF
    Introduction: There is conflicting evidence whether high-density lipoprotein cholesterol (HDL-C) is a risk factor for Alzheimer's disease (AD) and dementia. Genetic variation in the cholesteryl ester transfer protein (CETP) locus is associated with altered HDL-C. We aimed to assess AD risk by genetically predicted HDL-C. Methods: Ten single nucleotide polymorphisms within the CETP locus predicting HDL-C were applied to the International Genomics of Alzheimer's Project (IGAP) exome chip stage 1 results in up 16,097 late onset AD cases and 18,077 cognitively normal elderly controls. We performed instrumental variables analysis using inverse variance weighting, weighted median, and MR-Egger. Results: Based on 10 single nucleotide polymorphisms distinctly predicting HDL-C in the CETP locus, we found that HDL-C was not associated with risk of AD (P > .7). Discussion: Our study does not support the role of HDL-C on risk of AD through HDL-C altered by CETP. This study does not rule out other mechanisms by which HDL-C affects risk of AD

    Bottom-up gamma and bipolar disorder, clinical and neuroepigenetic implications

    No full text
    Objectives: This limited review examines the role of the reticular activating system (RAS), especially the pedunculopontine nucleus (PPN), one site of origin of bottom-up gamma, in the symptoms of bipolar disorder (BD).Methods: The expression of neuronal calcium sensor protein 1 (NCS-1) in the brains of BD patients is increased. It has recently been found that all PPN neurons manifest intrinsic membrane beta/gamma frequency oscillations mediated by high threshold calcium channels, suggesting that it is one source of bottom-up gamma. This review specifically addresses the involvement of these channels in the manifestation of BD.Results: Excess NCS-1 was found to dampen gamma band oscillations in PPN neurons. Lithium, a first line treatment for BD, was found to decrease the effects of NCS-1 on gamma band oscillations in PPN neurons. Moreover, gamma band oscillations appear to epigenetically modulate gene transcription in PPN neurons, providing a new direction for research in BD.Conclusions: This is an area needing much additional research, especially since the dysregulation of calcium channels may help explain many of the disorders of arousal in, elicit unwanted neuroepigenetic modulation in, and point to novel therapeutic avenues for, BD.Fil: Garcia Rill, Edgar. University of Arkansas for Medical Sciences; Estados UnidosFil: D'Onofrio, Stasia. University of Arkansas for Medical Sciences; Estados UnidosFil: Mahaffey, Susan. University of Arkansas for Medical Sciences; Estados UnidosFil: Bisagno, Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Farmacológicas. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Investigaciones Farmacológicas; ArgentinaFil: Urbano Suarez, Francisco Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentin
    corecore