2,205 research outputs found

    LiV2O4: evidence for two-stage screening

    Full text link
    LiV2O4, a frustrated mixed valent metal (d^1 d^2), is argued to undergo two spin-screening processes. The first quenches the effective spin to produce the spin 1/2 behavior seen below room temperature[1], while the second produces the heavy fermi liquid character seen at low temperatures[2]. We present here a preliminary discussion of a t-J model with strong Hund's coupling of the strongly correlated d-electrons. Valence fluctuations of the Hubbard operators (S = {1/2} 1) combined with the frustration of the underlying corner-shared tetrahedral vanadium lattice are the essential components of our model.Comment: 5 pages, 1 figure, accepted for proceedings of SCES'2001 Physica B, minor change

    Diagnostic Test and Therapy for Manganese Superoxide Dismutate (MSOD) Associated Diseases

    Get PDF
    The present invention provides a diagnostic method and a kit for detection of mutations localized within the 5′ promoter region of the MnSOD gene. Such mutations are associated with diseases characterized by decreased MnSOD activity such as certain formes of cancer, and ALS. Accordingly, the diagnostic method this invention provides, comprising RFLP, direct sequencing, or PCR analysis of the region within 3 kb, the transcription initiation site will detect these disorders. This invention also provides a therapeutic method for such disorders comprising transfection of affected cells or tissues with high activity, MnSOD expression vectors, or the administration of exogenous MnSOD enzyme

    Identification of an HIV-1 mutation in spacer peptide 1 that stabilizes the immature CA-SP1 lattice

    Get PDF
    Upon release of HIV-1 particles from the infected cell, the viral protease cleaves the Gag polyprotein at specific sites, triggering maturation. During this process, which is essential for infectivity, the capsid protein (CA) reassembles into a conical core. Maturation inhibitors (MIs) block HIV-1 maturation by interfering with protease-mediated CA-spacer peptide 1 (CA-SP1) processing, concomitantly stabilizing the immature CA-SP1 lattice; virions from MI-treated cells retain an immature-like CA-SP1 lattice, whereas mutational abolition of cleavage at the CA-SP1 site results in virions in which the CA-SP1 lattice converts to a mature-like form. We previously reported that propagation of HIV-1 in the presence of MI PF-46396 selected for assembly-defective, compound-dependent mutants with amino acid substitutions in the major homology region (MHR) of CA. Propagation of these mutants in the absence of PF-46396 resulted in the acquisition of second-site compensatory mutations. These included a Thr-to-Ile substitution at SP1 residue 8 (T8I), which results in impaired CA-SP1 processing. Thus, the T8I mutation phenocopies PF-46396 treatment in terms of its ability to rescue the replication defect imposed by the MHR mutations and to impede CASP1 processing. Here, we use cryo-electron tomography to show that, like MIs, the T8I mutation stabilizes the immature-like CA-SP1 lattice. These results have important implications for the mechanism of action of HIV-1 MIs; they also suggest that T8I may provide a valuable tool for structural definition of the CA-SP1 boundary region, which has thus far been refractory to highresolution analysis, apparently because of conformational flexibility in this region of Gag. IMPORTANCE HIV-1 maturation involves dissection of the Gag polyprotein by the viral protease and assembly of a conical capsid enclosing the viral ribonucleoprotein. Maturation inhibitors (MIs) prevent the final cleavage step at the site between the capsid protein (CA) and spacer peptide 1 (SP1), apparently by binding at this site and denying the protease access. Additionally, MIs stabilize the immature-like CA-SP1 lattice, preventing release of CA into the soluble pool. We previously found that T8I, a mutation in SP1, rescues a PF-46396-dependent CA mutant and blocks CA-SP1 cleavage. In this study, we imaged T8I virions by cryo-electron tomography and showed that T8I mutants, like MI-treated virions, contain an immature CA-SP1 lattice. These results lay the groundwork needed to understand the structure of the CA-SP1 interface region and further illuminate the mechanism of action of MIs

    Gravitational GUT Breaking and the GUT-Planck Hierarchy

    Full text link
    It is shown that non-renormalizable gravitational interactions in the Higgs sector of supersymmetric grand unified theories (GUT's) can produce the breaking of the unifying gauge group GG at the GUT scale MGUT∼1016M_{\rm GUT} \sim 10^{16}~GeV. Such a breaking offers an attractive alternative to the traditional method where the superheavy GUT scale mass parameters are added ad hoc into the theory. The mechanism also offers a natural explanation for the closeness of the GUT breaking scale to the Planck scale. A study of the minimal SU(5) model endowed with this mechanism is presented and shown to be phenomenologically viable. A second model is examined where the Higgs doublets are kept naturally light as Goldstone modes. This latter model also achieves breaking of GG at MGUTM_{\rm GUT} but cannot easily satisfy the current experimental proton decay bound.Comment: 11 pages, REVTeX, 1 figure included as an uuencoded Z-compressed PostScript file. Our Web page at http://physics.tamu.edu/~urano/research/gutplanck.html contains ready to print PostScript version (with figures) as well as color version of plot

    The role of ECL2 in CGRP receptor activation: a combined modelling and experimental approach

    Get PDF
    The calcitonin gene-related peptide (CGRP) receptor is a complex of a calcitonin receptor-like receptor (CLR), which is a family B G-protein-coupled receptor (GPCR) and receptor activity modifying protein 1. The role of the second extracellular loop (ECL2) of CLR in binding CGRP and coupling to Gs was investigated using a combination of mutagenesis and modelling. An alanine scan of residues 271–294 of CLR showed that the ability of CGRP to produce cAMP was impaired by point mutations at 13 residues; most of these also impaired the response to adrenomedullin (AM). These data were used to select probable ECL2-modelled conformations that are involved in agonist binding, allowing the identification of the likely contacts between the peptide and receptor. The implications of the most likely structures for receptor activation are discussed.</jats:p

    Unification Picture in Minimal Supersymmetric SU(5) Model with String Remnants

    Full text link
    The significant heavy threshold effect is found in the supersymmetric SU(5) model with two adjoint scalars, one of which is interpreted as a massive string mode decoupled from the lower-energy particle spectra. This threshold related with the generic mass splitting of the basic adjoint moduli is shown to alter properly the running of gauge couplings, thus giving a natural solution to the string-scale grand unification as prescribed at low energies by LEP precision measurements and minimal particle content. The further symmetry condition of the (top-bottom) Yukawa and gauge coupling superunification at a string scale results in the perfectly working predictions for the top and bottom quark masses in the absence of any large supersymmetric threshold corrections.Comment: published versio

    The infinite-range quantum random Heisenberg magnet

    Full text link
    We study with exact diagonalization techniques the Heisenberg model for a system of SU(2) spins with S=1/2 and random infinite-range exchange interactions. We calculate the critical temperature T_g for the spin-glass to paramagnetic transition. We obtain T_g ~ 0.13, in good agreement with previous quantum Monte Carlo and analytical estimates. We provide a detailed picture for the different kind of excitations which intervene in the dynamical response chi''(w,T) at T=0 and analyze their evolution as T increases. We also calculate the specific heat Cv(T). We find that it displays a smooth maximum at TM ~ 0.25, in good qualitative agreement with experiments. We argue that the fact that TM>Tg is due to a quantum disorder effect.Comment: 17 pages, 14 figure

    Thermal and Electrical Properties of gamma-NaxCoO2 (0.70 < x < 0.78)

    Full text link
    We have performed specific heat and electric resistivity measurements of Nax_{x}CoO2_{2} (x=0.70x=0.70-0.78). Two anomalies have been observed in the specific heat data for x=0.78x=0.78, corresponding to magnetic transitions at Tc=22T_{c}=22 K and Tk≃9T_{k}\simeq 9 K reported previously. In the electrical resistivity, a steep decrease at TcT_{c} and a bending-like variation at TbT_{b}(=120K for x=0.78x=0.78) have been observed. Moreover, we have investigated the xx-dependence of these parameters in detail. The physical properties of this system are very sensitive to xx, and the inconsistent results of previous reports can be explained by a small difference in xx. Furthermore, for a higher xx value, a phase separation into Na-rich and Na-poor domains occurs as we previously proposed, while for a lower xx value, from characteristic behaviors of the specific heat and the electrical resistivity at the low-temperature region, the system is expected to be in the vicinity of the magnetic instability which virtually exists below x=0.70x=0.70.Comment: 4 pages (3 figures included) and an extra figure (gif), to be published in J. Phys. Soc. Jpn. 73 (9) with possible minor revision
    • …
    corecore