29 research outputs found

    Choices change the temporal weighting of decision evidence

    Get PDF
    Many decisions result from the accumulation of decision-relevant information (evidence) over time. Even when maximizing decision accuracy requires weighting all the evidence equally, decision-makers often give stronger weight to evidence occurring early or late in the evidence stream. Here, we show changes in such temporal biases within participants as a function of intermittent judgments about parts of the evidence stream. Human participants performed a decision task that required a continuous estimation of the mean evidence at the end of the stream. The evidence was either perceptual (noisy random dot motion) or symbolic (variable sequences of numbers). Participants also reported a categorical judgment of the preceding evidence half-way through the stream in one condition or executed an evidence-independent motor response in another condition. The relative impact of early versus late evidence on the final estimation flipped between these two conditions. In particular, participants’ sensitivity to late evidence after the intermittent judgment, but not the simple motor response, was decreased. Both the intermittent response as well as the final estimation reports were accompanied by nonluminance-mediated increases of pupil diameter. These pupil dilations were bigger during intermittent judgments than simple motor responses and bigger during estimation when the late evidence was consistent than inconsistent with the initial judgment. In sum, decisions activate pupil-linked arousal systems and alter the temporal weighting of decision evidence. Our results are consistent with the idea that categorical choices in the face of uncertainty induce a change in the state of the neural circuits underlying decision-making. NEW & NOTEWORTHY The psychology and neuroscience of decision-making have extensively studied the accumulation of decision-relevant information toward a categorical choice. Much fewer studies have assessed the impact of a choice on the processing of subsequent information. Here, we show that intermittent choices during a protracted stream of input reduce the sensitivity to subsequent decision information and transiently boost arousal. Choices might trigger a state change in the neural machinery for decision-making

    Climate crisis and ecological emergency: why they concern (neuro)scientists, and what we can do

    Get PDF
    Our planet is experiencing severe and accelerating climate and ecological breakdown caused by human activity. As professional scientists, we are better placed than most to understand the data that evidence this fact. However, like most other people, we ignore this inconvenient truth and lead our daily lives, at home and at work, as if these facts weren’t true. In particular, we overlook that our own neuroscientific research practices, from our laboratory experiments to our often global travel, help drive climate change and ecosystem damage. We also hold privileged positions of authority in our societies but rarely speak out. Here, we argue that to help society create a survivable future, we neuroscientists can and must play our part. In April 2021, we delivered a symposium at the British Neuroscience Association meeting outlining what we think neuroscientists can and should do to help stop climate breakdown. Building on our talks (Box 1), we here outline what the climate and ecological emergencies mean for us as neuroscientists. We highlight the psychological mechanisms that block us from taking action, and then outline what practical steps we can take to overcome these blocks and work towards sustainability. In particular, we review environmental issues in neuroscience research, scientific computing, and conferences. We also highlight the key advocacy roles we can all play in our institutions and in society more broadly. The need for sustainable change has never been more urgent, and we call on all (neuro)scientists to act with the utmost urgency

    Citric Acid Water as an Alternative to Water Restriction for High-Yield Mouse Behavior.

    Get PDF
    Powerful neural measurement and perturbation tools have positioned mice as an ideal species for probing the neural circuit mechanisms of cognition. Crucial to this success is the ability to motivate animals to perform specific behaviors. One successful strategy is to restrict their water intake, rewarding them with water during a behavioral task. However, water restriction requires rigorous monitoring of animals' health and hydration status and can be challenging for some mice. We present an alternative that allows mice more control over their water intake: free home-cage access to water, made slightly sour by a small amount of citric acid (CA). In a previous study, rats with free access to CA water readily performed a behavioral task for water rewards, although completing fewer trials than under water restriction (Reinagel, 2018). We here extend this approach to mice and confirm its robustness across multiple laboratories. Mice reduced their intake of CA water while maintaining healthy weights. Continuous home-cage access to CA water only subtly impacted their willingness to perform a decision-making task, in which they were rewarded with sweetened water. When free CA water was used instead of water restriction only on weekends, learning and decision-making behavior were unaffected. CA water is thus a promising alternative to water restriction, allowing animals more control over their water intake without interfering with behavioral performance

    A standardized and reproducible method to measure decision-making in mice.

    Get PDF
    Abstract Progress in neuroscience is hindered by poor reproducibility of mouse behavior. Here we show that in a visual decision making task, reproducibility can be achieved by automating the training protocol and by standardizing experimental hardware, software, and procedures. We trained 101 mice in this task across seven laboratories at six different research institutions in three countries, and obtained 3 million mouse choices. In trained mice, variability in behavior between labs was indistinguishable from variability within labs. Psychometric curves showed no significant differences in visual threshold, bias, or lapse rates across labs. Moreover, mice across laboratories adopted similar strategies when stimulus location had asymmetrical probability that changed over time. We provide detailed instructions and open-source tools to set up and implement our method in other laboratories. These results establish a new standard for reproducibility of rodent behavior and provide accessible tools for the study of decision making in mice

    Citric acid water as an alternative to water restriction for high-yield mouse behavior

    No full text
    Anne E Urai, Valeria Aguillon-Rodriguez, InĂŞs C Laranjeira, Fanny Cazettes, International Brain Laboratory, Zachary F Mainen, & Anne K Churchland (2021) eNeur

    Standardized and reproducible measurement of decision-making in mice

    No full text
    The International Brain Laboratory et al. (2021) eLif

    CSV

    No full text
    This is an old version of the dataset that is described here: <a href="https://doi.org/10.6084/m9.figshare.4300043.v8">https://doi.org/10.6084/m9.figshare.4300043</a> please don't use the data here as it's incomplete. <br
    corecore