14 research outputs found

    Ki67 Proliferation Index as a Tool for Chemotherapy Decisions During and After Neoadjuvant Aromatase Inhibitor Treatment of Breast Cancer: Results From the American College of Surgeons Oncology Group Z1031 Trial (Alliance)

    Get PDF
    To determine the pathologic complete response (pCR) rate in estrogen receptor (ER) –positive primary breast cancer triaged to chemotherapy when the protein encoded by the MKI67 gene (Ki67) level was > 10% after 2 to 4 weeks of neoadjuvant aromatase inhibitor (AI) therapy. A second objective was to examine risk of relapse using the Ki67-based Preoperative Endocrine Prognostic Index (PEPI)

    Randomized Phase II Neoadjuvant Comparison Between Letrozole, Anastrozole and Exemestane for Postmenopausal Women With Estrogen Receptor-Rich Stage 2 to 3 Breast Cancer: Clinical and Biomarker Outcomes and Predictive Value of the Baseline PAM50-Based Intrinsic Subtype -ACOSOG Z1031

    No full text
    PURPOSE: Preoperative aromatase inhibitor (AI) treatment promotes breast-conserving surgery (BCS) for estrogen receptor (ER)-positive breast cancer. To study this treatment option, responses to three AIs were compared in a randomized phase II neoadjuvant trial designed to select agents for phase III investigations. PATIENTS AND METHODS: Three hundred seventy-seven postmenopausal women with clinical stage II to III ER-positive (Allred score 6-8) breast cancer were randomly assigned to receive neoadjuvant exemestane, letrozole, or anastrozole. The primary end point was clinical response. Secondary end points included BCS, Ki67 proliferation marker changes, the Preoperative Endocrine Prognostic Index (PEPI), and PAM50-based intrinsic subtype analysis. RESULTS: On the basis of clinical response rates, letrozole and anastrozole were selected for further investigation; however, no other differences in surgical outcome, PEPI score, or Ki67 suppression were detected. The BCS rate for mastectomy-only patients at presentation was 51%. PAM50 analysis identified AI-unresponsive nonluminal subtypes (human epidermal growth factor receptor 2 enriched or basal-like) in 3.3% of patients. Clinical response and surgical outcomes were similar in luminal A (LumA) versus luminal B tumors; however, a PEPI of 0 (best prognostic group) was highest in the LumA subset (27.1% v 10.7%; P = .004). CONCLUSION: Neoadjuvant AI treatment markedly improved surgical outcomes. Ki67 and PEPI data demonstrated that the three agents tested are biologically equivalent and therefore likely to have similar adjuvant activities. LumA tumors were more likely to have favorable biomarker characteristics after treatment; however, occasional paradoxical increases in Ki67 (12% of tumors with > 5% increase after therapy) suggest treatment-resistant cells, present in some LumA tumors, can be detected by post-treatment profiling

    Randomized Phase II Neoadjuvant Comparison Between Letrozole, Anastrozole, and Exemestane for Postmenopausal Women With Estrogen Receptor–Rich Stage 2 to 3 Breast Cancer: Clinical and Biomarker Outcomes and Predictive Value of the Baseline PAM50-Based Intrinsic Subtype—ACOSOG Z1031

    Get PDF
    PURPOSE: Preoperative aromatase inhibitor (AI) treatment promotes breast-conserving surgery (BCS) for estrogen receptor (ER)-positive breast cancer. To study this treatment option, responses to three AIs were compared in a randomized phase II neoadjuvant trial designed to select agents for phase III investigations. PATIENTS AND METHODS: Three hundred seventy-seven postmenopausal women with clinical stage II to III ER-positive (Allred score 6-8) breast cancer were randomly assigned to receive neoadjuvant exemestane, letrozole, or anastrozole. The primary end point was clinical response. Secondary end points included BCS, Ki67 proliferation marker changes, the Preoperative Endocrine Prognostic Index (PEPI), and PAM50-based intrinsic subtype analysis. RESULTS: On the basis of clinical response rates, letrozole and anastrozole were selected for further investigation; however, no other differences in surgical outcome, PEPI score, or Ki67 suppression were detected. The BCS rate for mastectomy-only patients at presentation was 51%. PAM50 analysis identified AI-unresponsive nonluminal subtypes (human epidermal growth factor receptor 2 enriched or basal-like) in 3.3% of patients. Clinical response and surgical outcomes were similar in luminal A (LumA) versus luminal B tumors; however, a PEPI of 0 (best prognostic group) was highest in the LumA subset (27.1% v 10.7%; P = .004). CONCLUSION: Neoadjuvant AI treatment markedly improved surgical outcomes. Ki67 and PEPI data demonstrated that the three agents tested are biologically equivalent and therefore likely to have similar adjuvant activities. LumA tumors were more likely to have favorable biomarker characteristics after treatment; however, occasional paradoxical increases in Ki67 (12% of tumors with > 5% increase after therapy) suggest treatment-resistant cells, present in some LumA tumors, can be detected by post-treatment profiling
    corecore