104 research outputs found

    Omecamtiv Mecarbil Enhances the Duty Ratio of Human \u3cem\u3eβ\u3c/em\u3e-Cardiac Myosin Resulting in Increased Calcium Sensitivity and Slowed Force Development in Cardiac Muscle

    Get PDF
    The small molecule drug omecamtiv mecarbil (OM) specifically targets cardiac muscle myosin and is known to enhance cardiac muscle performance, yet its impact on human cardiac myosin motor function is unclear. We expressed and purified human β-cardiac myosin subfragment 1 (M2β-S1) containing a C-terminal Avi tag. We demonstrate that the maximum actin-activated ATPase activity of M2β-S1 is slowed more than 4-fold in the presence of OM, whereas the actin concentration required for half-maximal ATPase was reduced dramatically (30-fold). We find OM does not change the overall actin affinity. Transient kinetic experiments suggest that there are two kinetic pathways in the presence of OM. The dominant pathway results in a slow transition between actomyosin·ADP states and increases the time myosin is strongly bound to actin. However, OM also traps a population of myosin heads in a weak actin affinity state with slow product release. We demonstrate that OM can reduce the actin sliding velocity more than 100-fold in the in vitro motility assay. The ionic strength dependence of in vitro motility suggests the inhibition may be at least partially due to drag forces from weakly attached myosin heads. OM causes an increase in duty ratio examined in the motility assay. Experiments with permeabilized human myocardium demonstrate that OM increases calcium sensitivity and slows force development (ktr) in a concentration-dependent manner, whereas the maximally activated force is unchanged. We propose that OM increases the myosin duty ratio, which results in enhanced calcium sensitivity but slower force development in human myocardium

    Associations between depression subtypes, depression severity and diet quality: cross-sectional findings from the BiDirect study

    Get PDF
    Depression is supposed to be associated with an unhealthy lifestyle including poor diet. The objective of this study was to investigate differences in diet quality between patients with a clinical diagnosis of depression and population-based controls. Additionally, we aimed to examine effects of specific depression characteristics on diet by analyzing if diet quality varies between patients with distinct depression subtypes, and if depression severity is associated with diet quality.The study included 1660 participants from the BiDirect Study (n = 840 patients with depression, n = 820 population-based controls). The psychiatric assessment was based on clinical interviews and a combination of depression scales in order to provide the classification of depression subtypes and severity. Diet quality scores, reflecting the adherence to a healthy dietary pattern, were calculated on the basis of an 18-item food frequency questionnaire. Using analysis of covariance, we calculated adjusted means of diet quality scores and tested differences between groups (adjusted for socio-demographic, lifestyle-, and health-related factors).We found no differences in diet quality between controls and patients with depression if depression was considered as one entity. However, we did find differences between patients with distinct subtypes of depression. Patients with melancholic depression reported the highest diet quality scores, whereas patients with atypical depression reported the lowest scores. Depression severity was not associated with diet quality.Previous literature has commonly treated depression as a homogeneous entity. However, subtypes of depression may be associated with diet quality in different ways. Further studies are needed to enlighten the diet-depression relationship and the role of distinct depression subtypes.Corinna Rahe, Bernhard T Baune, Michael Unrath, Volker Arolt, Jürgen Wellmann, Heike Wersching and Klaus Berge

    Diffusion-weighted magnetic resonance imaging detection of basal forebrain cholinergic degeneration in a mouse model

    Get PDF
    Loss of basal forebrain cholinergic neurons is an early and key feature of Alzheimer's disease, and magnetic resonance imaging (MRI) volumetric measurement of the basal forebrain has recently gained attention as a potential diagnostic tool for this condition. The aim of this study was to determine whether loss of basal forebrain cholinergic neurons underpins changes which can be detected through diffusion MRI using diffusion tensor imaging (DTI) and probabilistic tractography in a mouse model. To cause selective basal forebrain cholinergic degeneration, the toxin saporin conjugated to a p75 neurotrophin receptor antibody (mu-p75-SAP) was used. This resulted in similar to 25% loss of the basal forebrain cholinergic neurons and significant loss of terminal cholinergic projections in the hippocampus, as determined by histology. To test whether lesion of cholinergic neurons caused basal forebrain, hippocampal, or whole brain atrophy, we performed manual segmentation analysis, which revealed no significant atrophy in lesioned animals compared to controls (Rb-IgG-SAP). However, analysis by DTI of the basal forebrain area revealed a significant increase in fractional anisotropy (FA; + 7.7%), mean diffusivity (MD; + 6.1%), axial diffusivity (AD; + 8.5%) and radial diffusivity (RD; +4.0%) in lesioned mice compared to control animals. These parameters strongly inversely correlated with the number of choline acetyl transferase-positive neurons, with FA showing the greatest association (r(2) = 0.72), followed by MD (r(2) = 0.64), AD (r(2) = 0.64) and RD (r(2) = 0.61). Moreover, probabilistic tractography analysis of the septo-hippocampal tracts originating from the basal forebrain revealed an increase in streamline MD (+5.1%) and RD (+4.3%) in lesioned mice. This study illustrates that moderate loss of basal forebrain cholinergic neurons (representing only a minor proportion of all septo-hippocampal axons) can be detected by measuring either DTI parameters of the basal forebrain nuclei or tractography parameters of the basal forebrain tracts. These findings provide increased support for using DTI and probabilistic tractography as non-invasive tools for diagnosing and/or monitoring the progression of conditions affecting the integrity of the basal forebrain cholinergic system in humans, including Alzheimer's disease. Crown Copyright (C) 2012 Published by Elsevier Inc. All rights reserved

    Comprehensive Evaluation of Corticospinal Tract Metabolites in Amyotrophic Lateral Sclerosis Using Whole-Brain 1H MR Spectroscopy

    Get PDF
    Changes in the distribution of the proton magnetic resonance spectroscopy (MRS) observed metabolites N-acetyl aspartate (NAA), total-choline (Cho), and total-creatine (Cre) in the entire intracranial corticospinal tract (CST) including the primary motor cortex were evaluated in patients with amyotrophic lateral sclerosis (ALS). The study included 38 sporadic definite-ALS subjects and 70 age-matched control subjects. All received whole-brain MR imaging and spectroscopic imaging scans at 3T and clinical neurological assessments including percentage maximum forced vital capacity (FVC) and upper motor neuron (UMN) function. Differences in each individual metabolite and its ratio distributions were evaluated in the entire intracranial CST and in five segments along the length of the CST (at the levels of precentral gyrus (PCG), centrum semiovale (CS), corona radiata (CR), posterior limb of internal capsule (PLIC) and cerebral peduncle (CP)). Major findings included significantly decreased NAA and increased Cho and Cho/NAA in the entire intracranial CST, with the largest differences for Cho/NAA in all the groups. Significant correlations between Cho/NAA in the entire intracranial CST and the right finger tap rate were noted. Of the ten bilateral CST segments, significantly decreased NAA in 4 segments, increased Cho in 5 segments and increased Cho/NAA in all the segments were found. Significant left versus right CST asymmetries were found only in ALS for Cho/NAA in the CS. Among the significant correlations found between Cho/NAA and the clinical assessments included the left-PCG versus FVC and right finger tap rate, left -CR versus FVC and right finger tap rate, and left PLIC versus FVC and right foot tap rate. These results demonstrate that a significant and bilaterally asymmetric alteration of metabolites occurs along the length of the entire intracranial CST in ALS, and the MRS metrics in the segments correlate with measures of disease severity and UMN function

    The relationship among restless legs syndrome (Willis–Ekbom Disease), hypertension, cardiovascular disease, and cerebrovascular disease

    Get PDF

    Perceived Unmet Rehabilitation Needs 1 Year After Stroke

    No full text
    • …
    corecore