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The small molecule drug omecamtiv mecarbil (OM) specifically
targets cardiac muscle myosin and is known to enhance cardiac
muscle performance, yet its impact on human cardiac myosin
motor function is unclear. We expressed and purified human
�-cardiac myosin subfragment 1 (M2�-S1) containing a C-termi-
nal Avi tag. We demonstrate that the maximum actin-activated
ATPase activity of M2�-S1 is slowed more than 4-fold in the pres-
ence of OM, whereas the actin concentration required for half-
maximal ATPase was reduced dramatically (30-fold). We find OM
does not change the overall actin affinity. Transient kinetic exper-
iments suggest that there are two kinetic pathways in the presence
of OM. The dominant pathway results in a slow transition between
actomyosin�ADP states and increases the time myosin is strongly
bound to actin. However, OM also traps a population of myosin
heads in a weak actin affinity state with slow product release. We
demonstrate that OM can reduce the actin sliding velocity more
than 100-fold in the in vitro motility assay. The ionic strength
dependence of in vitro motility suggests the inhibition may be at
least partially due to drag forces from weakly attached myosin
heads. OM causes an increase in duty ratio examined in the motility
assay. Experiments with permeabilized human myocardium dem-
onstrate that OM increases calcium sensitivity and slows force
development (ktr) in a concentration-dependent manner, whereas
the maximally activated force is unchanged. We propose that OM
increases the myosin duty ratio, which results in enhanced calcium
sensitivity but slower force development in human myocardium.

Heart failure continues to be a major health problem world-
wide, and despite current treatment options, the 5-year mortal-

ity rate remains relatively high (42%) (1, 2). In systolic heart
failure, inotropic drugs, including �-agonists and phosphodies-
terase inhibitors, are utilized to enhance cardiac muscle con-
tractile force in individuals that are hypocontractile (3). How-
ever, prolonged use of these drugs is associated with increased
myocardial oxygen demand, arrhythmias, and impaired cal-
cium signaling (4, 5). Recently, drugs are being pursued that
directly interact with cardiac myosin, the molecular motor that
drives contraction in the heart, to enhance contractile force
without altering intracellular calcium concentrations (6).

Muscle contraction is driven by an ATP-dependent cyclic
interaction between the myosin thick filaments and actin thin
filaments, with contraction and relaxation dependent on calci-
um-mediated changes in the thin filament regulatory proteins
troponin/tropomyosin (7). Thick filament-associated proteins
also play a role in regulating contraction (8, 9). A solid under-
standing of the conserved actomyosin ATPase pathway has
emerged from decades of biochemical, biophysical, and struc-
tural studies (Scheme 1) (10, 11). ATP binding to actomyosin
(K�1K�2) dramatically weakens the affinity of myosin for actin
and rapidly dissociates the complex, which allows for ATP hy-
drolysis to occur in a detached state (K3). Thus, the M�ATP and
M�ADP�Pi states are referred to as weak actin binding states
(boldface in Scheme 1), and the M�ADP and nucleotide-free
states are referred to as strong actin binding states. The binding
of M�ADP�Pi to actin triggers the myosin power stroke that is
followed by an essentially irreversible phosphate release step
(K�4) (12, 13). A second power stroke is thought to occur after
phosphate release but is controversial (before K�5A) (12, 14).
The release of ADP from the active site (K�5B) is the step that
limits detachment from actin and is thus thought to be the step
that limits maximum shortening velocity in muscle (15). How-
ever, attachment-limited models have also been proposed that
can explain maximum shortening velocity in the context of the
myosin ATPase cycle (16, 17).

Omecamtiv mecarbil (OM)2 is an allosteric modulator of
human �-cardiac myosin that is currently in phase II clinical
trials (18 –20). OM was found to be specific for cardiac myosin
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and does not alter skeletal or smooth muscle myosin (6). Mus-
cle fiber studies that have examined the impact of OM are
somewhat contradictory. A study that utilized rat cardiac mus-
cle found enhanced contractility (fractional shortening) with-
out changes in the calcium transient (6). Other studies have
revealed an increase in calcium sensitivity as measured by the
force-pCa relationship in mouse and rat myocardium, but a
slowing of force development and relaxation was also noted (21,
22). Only one study has examined human myocardium and
found a slowing of cross-bridge kinetics and an increase in sen-
sitivity to calcium (23).

To investigate how OM impacts cardiac myosin motor per-
formance, studies have examined purified cardiac myosin using
steady-state and transient kinetic analysis as well as in vitro
motility assays (6, 24). A study on porcine cardiac myosin deter-
mined that OM alters the hydrolysis equilibrium constant to
favor products and enhances the rate of actin-activated phos-
phate release, but it does not change the ADP release step (24).
These factors were predicted to enhance the number of myosin
cross-bridges in the strongly bound state, which would explain
the increased force in muscle fiber studies. However, OM was
found to decrease the maximum actin-activated ATPase rate
(�2-fold) (24), but the step(s) in the ATPase cycle slowed by
OM were not determined. Interestingly, it was found that OM
dramatically reduces (10 –20-fold) the sliding velocity in the in
vitro motility assay (24 –27). These results were puzzling
because the study by Liu et al. (24) found no change in the ADP
release rate constant, and this step correlates with sliding veloc-
ity in a detachment limited model of actomyosin motility. Thus,
it has been proposed that the increase in the number of actin-
bound cross-bridges enhances the load experienced by the
force generating cross-bridges and slows the ADP release rate
constant and hence sliding velocity (24). The ADP release step
has indeed been demonstrated to be load-sensitive and respon-
sible for the load-dependent changes in the ATPase rate in con-
tracting muscle (28, 29). Therefore, further investigation of spe-
cific step(s) in the ATPase cycle that are slowed by OM is
required to define the complete kinetic mechanism. In addi-
tion, it is important to directly measure the duty ratio, the frac-
tion of the ATPase cycle myosin is bound to actin, in the in vitro
motility assay to evaluate hypotheses about how OM dramati-
cally slows sliding velocity. Finally, it is important to examine
the impact of OM on human cardiac myosin as well as human
cardiac muscle to allow direct correlations to clinical studies.

In this study, we investigated the mechanism of action of OM
on recombinant human �-cardiac myosin using steady-state
and transient kinetic measurements as well as in vitro motility
assays. We also studied the impact of the drug on the muscle
mechanics of human myocardium. We find that OM dra-

matically alters the myosin ATPase kinetics, which creates
enhanced drag forces that contribute to the slowing of sliding
velocity. Based on measurements with permeabilized human
cardiac muscle, we find that OM increases calcium sensitivity
and slows force generation, but it does not change steady-state
force at saturating calcium concentrations.

Results

Purification of M2�-S1—We obtained �0.75–1.0 mg of
M2�-S1 per 30 plates of infected C2C12 cells. The M2�-S1 was
95% pure based on Coomassie-stained SDS-polyacrylamide
gels (Fig. 1). We assumed the two low molecular weight bands,
which co-purified with the M2�-S1 heavy chain (99,021 kDa),
corresponded to the myosin light chains. The low molecular
weight bands were excised from the gel and digested into pep-
tides using trypsin, and their sequences were determined using
LC-MS/MS. The upper band generated unique peptides from
two essential light chain isoforms as follows: nine peptides
corresponding to 65% of the myosin light chain 1/3 (Myl1)
sequence, skeletal muscle isoform (UniProt P05977), and 13
peptides corresponding to 55% of the myosin light chain 4
(Myl4) sequence, atrial/fetal isoform (UniProt P09541). The
lower band generated 12 highly abundant unique peptides cor-
responding to 70% of the sequence of myosin regulatory light
chain 2 (Mylpf), skeletal muscle isoform (UniProt P97457). The
mouse essential light chains Myl1 and My14 were 75 and 79%
identical and 83 and 91% similar, respectively, to the human
cardiac muscle essential light chain (MYL3) (UniProt P08590).
The mouse regulatory light chain contains 74% sequence iden-
tity and 87% sequence similarity with the human cardiac mus-
cle regulatory light chain (MYL2) (UniProt P10916) (see sup-
plemental Fig. S1 for alignments).

Actin-activated ATPase of M2�-S1—The maximum actin-
activated ATPase rate and actin dependence of the ATPase rate
of M2�-S1 were not significantly impacted by the presence of
DMSO (0.1%) (Fig. 2A and Table 1). Biotinylation of the Avi tag
of M2�-S1 also did not alter the ATPase activity. The presence
of 10 �M OM reduced the maximal ATPase (kcat) 4.5-fold and
dramatically reduced the actin concentration at which ATPase
is half-maximal (KATPase) 30-fold. The OM-induced inhibition
of the actin-activated ATPase was evaluated in a concentration-
dependent manner to determine the EC50 (0.52 � 0.10 �M)
(Fig. 2B).

Actin Co-sedimentation Assays with M2�-S1—We examined
the steady-state actin affinity of M2�-S1 using actin co-sedi-
mentation assays (Fig. 2C). The experiments were performed
using conditions nearly identical to the ATPase assays with the
exception that the co-sedimentation assay was performed over
a longer time period (�10 min). The actin-affinity of M2�-S1 in
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the presence of ATP was similar in the presence and absence of
OM (Kactin � 145 � 18 and 155 � 13 �M, respectively).

Transient Kinetic Analysis of Actin-activated Product Release—
We examined the ADP release rate constant by mixing the
actomyosin�mantADP complex (0.5 �M M2�-S1, 0.6 �M actin, 10
�M mantADP) with saturating ATP (1 mM), and we found that
there was no difference in the presence and absence of OM (kobs �
313 � 6 and 306 � 5 s�1, respectively) (data not shown). We also
performed single turnover sequential mix experiments in the
stopped flow to monitor the actin-activated product release steps
of M2�-S1 in the presence and absence of OM (Fig. 3). The exper-
iment was performed by mixing M2�-S1 with substoichiometric
mantATP, aging the reaction for 10 s to allow ATP binding and
hydrolysis, and then mixing with varying concentrations of actin
(0.25 �M M2�-S1, 0.23 �M mantATP, varying actin concentra-
tions). We observed a two-exponential fluorescence transient at
each actin concentration both in the presence and absence of OM
(Fig. 3, A–D). The rate constant of the slow phase was independent
of actin concentration and relatively similar in the presence and
absence of OM (0.1–0.6 s�1). The fast phase was hyperbolically
dependent on actin concentration, and the maximum rate satu-
rated at a much lower actin concentration in the presence of OM.
In addition, the maximum rate constant of the fast phase was
reduced in the presence of OM (4.3 � 0.5 s�1) compared with the
absence (�11.2 � 0.1 s�1). The relative amplitudes of the fast and
slow phases were dependent on actin concentration with the fast
phase more pronounced at a higher actin concentration (Fig. 3C).
At high actin concentrations (40 �M), the relative amplitude of the
slow phase was increased in the presence of OM (30%) compared
with the absence (10%). Thus, the presence of OM slows actin-
activated product release by reducing the rate constant of the fast
pathway and increasing the flux through the slower product
release pathway.

In Vitro Motility of M2�-S1—The sliding velocity produced
by M2�-S1 in the in vitro motility assay was evaluated in the
presence of DMSO and 10 �M OM by examining three separate
protein preparations at a loading concentration of 0.48 �M (Fig.

4). There were slight differences in the average sliding velocity
(50 filaments) determined in each preparation for the DMSO
(1646 � 30, 1837 � 36, and 1469 � 22 nm/s) and OM (7.87 �
0.14, 6.50 � 0.22, and 6.23 � 0.19 nm/s) conditions. Control
experiments performed in the absence of ATP demonstrated
no movement during a 10-min acquisition (data not shown),
which confirmed the sensitivity of the velocity measurements.
Therefore, the data from all three preparations was pooled
together (150 filaments) to determine the average sliding veloc-
ity in the presence of DMSO (1651 � 24 nm/s) or OM (6.87 �
0.12 nm/s). The average velocity of M2�-S1 was similar in the

FIGURE 1. Purified recombinant human M2�-S1. Representative SDS-poly-
acrylamide gel of purified recombinant M2�-S1 compared with molecular
weight standards as indicated. The myosin heavy chain (HC), regulatory (RLC),
and essential light chains (ELC) are labeled.

FIGURE 2. Steady-state ATPase activity and actin affinity of M2�-S1 in the
presence and absence of OM. A, ATPase activity of M2�-S1 was examined as
a function of F-actin concentration in MOPS20 buffer in the presence of 0.1%
DMSO, 10 �M OM, or buffer only. The ATPase activity data were fit to a hyper-
bolic function to determine kcat and KATPase. B, ATPase activity in the presence
of 40 �M actin was examined in the presence of varying concentrations of OM.
The data were fit to Equation 1 to determine the EC50. C, steady-state actin
affinity was measured in the presence and absence of OM using the actin
co-sedimentation assay. The fraction of M2�-S1 bound to actin is plot as a
function of actin concentration and fit to a hyperbolic equation to determine
Kactin. Errors bars represent standard deviation of the mean from three protein
preparations (some error bars are smaller than the symbol and therefore are
not shown).
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presence and absence (1712 � 24 nm/s) of DMSO. The OM
concentration-dependent inhibition of in vitro motility demon-
strated that the EC50 was 5-fold lower (0.10 � 0.01 �M) than
that measured in the ATPase assay.

Ionic Strength Dependence of in Vitro Motility and ATPase
Activity—The difference in the degree of OM-induced inhibi-
tion in ATPase and in vitro motility assays has also been dem-
onstrated by two other groups and led them to propose that
OM impacts strain-dependent ADP release in the motility
assay (24 –26). Based on our transient kinetic results, we rea-
soned that OM may promote a slow product release pathway
that results in non-force generating heads, which create drag
forces that contribute to the slowing of in vitro motility. We
presumed that the slow pathway may stabilize the traditionally
defined weak binding states (M�ATP or M�ADP�Pi). We tested

this hypothesis by measuring the in vitro motility as a function
of increasing ionic strength (20 –150 mM KCl) in two protein
preparations, because the weak binding states are known to be
highly sensitive to ionic strength (Fig. 5 and Table 2) (30 –32).
We found that in the absence of OM, the increasing ionic
strength results in little change in the velocity up to 100 mM KCl
and a small reduction in velocity at 150 mM KCl (Fig. 5A). In the
presence of OM, ionic strength increased the sliding velocity as
indicated by more than a 2-fold increase demonstrated when
comparing 20 and 150 mM KCl (Fig. 5B). We also found that the
ATPase activity in the presence of 40 �M actin was more sensi-
tive to ionic strength in the absence of OM, but in the presence
of OM the ATPase was much less sensitive to the increase in
ionic strength (Fig. 5C). In the presence of OM, we were able to
determine the maximum ATPase activity at high ionic strength
(150 mM KCl), although this was not feasible in the absence of
OM (Table 1). Because the maximum ATPase rate was similar
at high and low ionic strength, the enhanced sliding velocity
observed at higher ionic strength is at least partially due to the
attenuation of drag forces from weakly bound myosin heads.

Density Dependence of in Vitro Motility—We examined the
density dependence of the sliding velocity by performing the in
vitro motility assay as a function of M2�-S1 concentration
loaded into the flow cell. At low ionic strength (MOPS20 buffer)
in the absence of OM, we observed little change in the density
dependence, but in the presence of OM, the velocity increased
2.5-fold as the loading concentration was decreased from 2.0 to
0.24 �M (Fig. 6, A and B). At higher ionic strength (100 mM KCl)
in the absence of OM, the velocities gradually decreased as den-
sity was decreased, whereas in the presence of OM, the velocity
increase at lower densities was attenuated compared with low
ionic strength conditions.

Duty Ratio Measurements—To evaluate the hypothesis that
OM increases the duty ratio, we attempted to directly examine
the duty ratio in the in vitro motility assay (100 mM KCl) by
examining the velocity as a function of available myosin heads
on the surface (Fig. 7, A and B). We determined the number of
heads on the motility surface using NH4-ATPase assays (38
heads and 117 heads per �m of actin filament at 0.24 and 0.35
�M loading concentrations, respectively). We found it difficult
to obtain sliding velocities at low motor density (�10 available
heads), and thus fitting the data to established equations (33,
34) was not robust. We did observe a trend in the data that
demonstrated a relative increase in duty ratio in the presence of
OM compared with DMSO. We also evaluated the duty ratio by
plotting the velocity as a function of actin filament length
at 0.24 �M loading concentration, and a similar trend was
observed (Fig. 7B).

Muscle Mechanics of Human Myocardium—To evaluate the
effects of OM on the contractile properties of human myocar-
dium, we performed experiments using chemically permeabi-
lized multicellular preparations. Maximum isometric force was
not significantly altered by OM (Fig. 8A). In contrast, 1 and 10
�M OM significantly increased pCa50, indicating that less free
Ca2� was required to produce half-maximal Ca2� activation
(Fig. 8B). These concentrations of OM also slowed ktr, the rate
of tension recovery following a rapid shortening/re-stretch per-
turbation (Fig. 8C). These data suggest that OM reduces the

TABLE 1
Summary of actin-activated ATPase results with M2�-S1
ND means not determined.

Conditions V0 kcat KATPase

s�1 s�1 �M

20 mM KCla 0.02 � 0.02 8.79 � 0.56 69.88 � 7.11
20 mM KCl (biotinylated)b 0.01 � 0.01 7.36 � 0.56 58.75 � 5.59
20 mM KCl � DMSOc 0.02 � 0.01 7.48 � 1.07 56.53 � 13.92
150 mM KCl � DMSOd 0.01 � 0.01 ND ND
20 mM KCl � OMe 0.04 � 0.01 1.65 � 0.05 1.91 � 0.44
150 mM KCl � OMf 0.01 � 0.01 1.46 � 0.05 95.31 � 63.0

a M2�-S1 is in MOPS 20 Buffer.
b Biotinylated M2�-S1 is in MOPS 20 Buffer.
c M2�-S1 in MOPS 20 Buffer is in the presence of 0.1% DMSO.
d M2�-S1 in MOPS (150 mM KCl) Buffer is in the presence of 0.1% DMSO.
e M2�-S1 in MOPS 20 Buffer is in the presence of 10 �M OM.
f M2�-S1 in MOPS (150 mM KCl) Buffer is in the presence of 10 �M OM.

FIGURE 3. Actin-activated product release of M2�-S1 in the presence and
absence of OM. A single turnover sequential mix stopped-flow experiment
was performed by mixing M2�-S1 with substoichiometric mantATP, aged for
10 s, and then mixed with varying concentrations of actin. The fluorescence
transients were best fit to a two-exponential function at all actin concentra-
tions. A, fast phase of the fluorescence transients was plotted as a function of
actin concentration and fit to a hyperbolic function. B, slow phase of the
fluorescence transients ranged from 0.1 to 0.5 s�1. C, relative amplitudes of
the fast and slow components were plotted as a function of actin concentra-
tion and fit to a hyperbolic function. D, representative fluorescence transients
obtained in the presence 10 �M actin and with (kobs � 4.39 � 0.10 and 0.26 �
0.02 s�1) or without (kobs � 2.97 � 0.01 and 0.63 � 0.01 s�1) OM. Errors bars
represent standard error of the fits (some error bars are smaller than the sym-
bol and therefore are not shown).
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rate at which cross-bridges transition to force-dependent states
in a dose-dependent manner.

Discussion

The discovery of drugs that directly interact with myosin to
alter the force and velocity properties of cardiac muscle are
promising, because they may be able to improve contractile
performance without altering calcium homeostasis and myo-

cardial oxygen demand. Our characterization of the motor
properties of M2�-S1 suggests there are two kinetic pathways
in the presence of OM. The drug can enhance the duty ratio of
myosin heads that flux through the conserved ATPase pathway
by increasing the period of time they are strongly bound to the
actin filament during filament sliding. However, OM also traps
some of the myosin heads in a weakly bound state with slow
product release. We demonstrate that the main impact of OM

FIGURE 4. In vitro motility of M2�-S1 in the presence and absence of OM. The in vitro motility sliding velocity was determined for three different protein
preparations in MOPS20 buffer in the presence of 0.1% DMSO (A) and 10 �M OM (B). The M2�-S1 loading density was 0.48 �M. The sliding velocities from all
three preparations (150 filaments) were combined to determine the average velocity (nm/s) and standard error for the presence of DMSO (1651 � 21) or OM
(6.87 � 0.12). C, sliding velocity was determined as a function of OM concentration and fit to Equation 1 to determine EC50. Errors bars represent standard
deviation of the mean from two protein preparations (some error bars are smaller than the symbol and therefore are not shown).

FIGURE 5. Impact of ionic strength on the actin-activated ATPase and in vitro motility sliding velocity of M2�-S1. The in vitro motility was measured as
in Fig. 4 with the addition of the appropriate amount of KCl in the final activation buffer in the presence of 0.1% DMSO (A) or 10 �M OM (B). The M2�-S1 loading
density was 0.48 �M, and an average velocity from 60 filaments analyzed is shown with a red line. C, ATPase activity was examined in the presence of 40 �M actin
at different KCl concentrations with and without 10 �M OM. Errors bars represent standard deviation of the mean from two protein preparations (some error
bars are smaller than the symbol and therefore are not shown).

TABLE 2
Summary of ionic strength dependence of in vitro motility assay
results with M2�-S1

Conditions Average sliding velocity No. of filaments

nm/s (�stderr)
DMSO

20 mM KCl 1783 � 37 60
35 mM KCl 1839 � 35 60
50 mM KCl 1739 � 36 60
75 mM KCl 2074 � 49 60

100 mM KCl 1817 � 22 60
150 mM KCl 1284 � 43 30

OM
20 mM KCl 7.33 � 0.18 60
35 mM KCl 9.39 � 0.35 60
50 mM KCl 9.76 � 0.25 60
75 mM KCl 13.07 � 0.53 60

100 mM KCl 14.43 � 0.20 60
150 mM KCl 17.17 � 0.18 30

FIGURE 6. Density dependence of in vitro motility of M2�-S1 in the pres-
ence and absence of OM. We examined the sliding velocity as a function of
M2�-S1 concentration loaded into the motility chamber (20 filaments/con-
centration). The average velocity (relative to the 2.0 �M loading concentra-
tion) at each loading concentration is plotted to demonstrate density depen-
dence in low (20 mM KCl) ionic strength (A) and high (100 mM KCl) ionic
strength (B). Error bars represent the standard error of the mean (some error
bars are smaller than the symbol and therefore are not shown).
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on human cardiac muscle mechanics is a shift in calcium sensitiv-
ity that is likely caused by the enhanced duty ratio that increases
cooperative activation of the thin filament. In addition, OM slows
down the kinetics of force development without changing steady-
state force at maximum calcium concentrations.

Impact of OM on the Myosin ATPase Cycle in Solution—Our
results add to the previous transient kinetic analysis of porcine
cardiac heavy meromyosin and bovine cardiac myosin S1 in the
presence of OM (6, 24). Similar to the previous findings, we
found that when ADP release is measured by mixing a complex
of actomyosin�ADP with excess ATP, the determined rate con-
stant is nearly identical in the presence and absence of OM.
This method likely monitors the final step of ADP release from
actomyosin (K�5B). We also examined actin-activated product
release with sequential mix experiments and provide evidence
for two product release pathways. The actin dependence of the
rate constants of the fast phase from the sequential mix exper-
iments (Fig. 3A, 70% of the amplitude at saturating actin) is very
similar to the steady-state ATPase results (Fig. 2A). Thus, the
fast phase likely represents the traditional pathway (Scheme 1,
blue arrows) in which the M�ADP�Pi complex binds to actin and
releases phosphate (K�4) and then ADP (K�5A and K�5B). We
propose that the presence of OM slows the flux through the
traditional pathway by slowing the isomerization between
actomyosin�ADP states (K�5A). The actin dependence of the
ATPase assay (KATPase) is thought to be mainly determined by the

hydrolysis equilibrium constant as well as the rate constants for
actin-activated phosphate release and ADP release (35). We find
that the reduction in KATPase in the presence of OM is consistent
with the previous transient kinetic studies (6, 24) and our current
results that suggest K�5A is reduced in the presence of the drug.

The slower pathway observed in our sequential mix experi-
ments may be associated with slow ATP hydrolysis (K3) or
phosphate release (K4). The slower pathway could be associated
with the formation of strong or weak actin binding states, but
because the actin co-sedimentation assay demonstrates that
the steady-state actin affinity is unchanged by OM, we favor the
latter. A previous transient kinetic study proposed a branched
pathway associated with formation of a post-hydrolysis dead
end intermediate with slow phosphate release (24). In this
model, ATP hydrolysis occurs before formation of the pre-
power stroke state, which leads to formation of myosin with
hydrolyzed ATP in its active site but still in a post-power stroke
state. We propose that OM increases the flux through this path-
way and stabilizes the dead end intermediate that generates a
pool of non-force generating heads. The proposed mechanism
is consistent with the increased drag forces that are ionic
strength-dependent in the motility assay. Our transient kinetic
results are consistent with the 4 –5-fold decrease in the maxi-
mum steady-state ATPase rate. Further transient kinetic anal-
ysis is necessary to directly examine the impact of OM on key
steps in the ATPase pathway, including the affinity for actin in
the weak binding states and the isomerization between
actomyosin�ADP states (K�5A).

Impact of OM on in Vitro Motility—We demonstrate that
M2�-S1 in the absence of OM can generate sliding velocities
that are 2-fold faster than the previous work with recombinant
human �-cardiac myosin. Previous studies have found that the
sliding velocity is between 800 –1000 nm/s using a construct
that contains only the essential light chain binding region and
not the regulatory light chain (short S1) (26, 36, 37). The short
S1 construct is attached to the surface with an antibody specific
for a peptide added to the C terminus. Because this construct
contains approximately one-half of the lever arm and the myo-
sin lever arm length has been shown to correlate with step size
and velocity (38 – 40), it is possible that the short lever arm
reduces the sliding velocity. The Winkelmann laboratory (25)
examined the sliding velocity of recombinant human cardiac
motor domain with a GFP fusion in place of the lever arm that
was attached to the surface with an anti-GFP antibody, and they
found a sliding velocity of 800 nm/s. The same group also exam-
ined recombinant human cardiac heavy meromyosin directly
attached to the surface and found the velocity was also 800
nm/s. The M2�-S1 used in this study was attached to the sur-
face with an extremely high affinity interaction, streptavidin
and biotinylated Avi tag, which may reduce nonspecific attach-
ments of myosin with the motility surface. Previous studies
have reported velocities from tissue-purified human cardiac
myosin in the range of �1500 nm/s (41), which is similar to our
results. Our mass spectrometry revealed the presence of two
ELC isoforms, which may also impact the sliding velocity.
Indeed, a mouse model that induced overexpression of the
atrial ELC isoform in the ventricle resulted in increased short-
ing velocity (1.78-fold) in isolated muscle and sliding velocity in

FIGURE 7. Duty ratio of M2�-S1 in the presence and absence of OM. A, we
examined the duty ratio in the presence of DMSO and OM in high ionic
strength buffer (100 mM KCl) by examining the sliding velocity as a function of
available myosin heads (loading concentration was 0.24 or 0.35 �M). The
number of available myosin heads was dependent on the density (deter-
mined with NH4-ATPase assays) and the actin filament length. The trend in
the data demonstrates a higher duty ratio in the presence of OM. B, velocity as
a function of actin filament length (0.24 �M loading concentration) was also
plotted, and the data are fit to a hyperbolic function to highlight the relative
difference between the two conditions.
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the in vitro motility assays (1.17-fold) (42). Therefore, the dif-
ferences in the velocities observed in this work compared with
previous studies could be due to the methods of attaching the
myosin to the surface, the length of the lever arm in the con-
structs examined, the light chain composition, and slight differ-
ences in the ionic strength and temperature utilized.

The large decrease in sliding velocity observed in the pres-
ence of OM in this study is more pronounced than the previous
work with porcine and human cardiac myosin (15–20-fold) (24,
26, 27). One possible explanation for these differences is the
higher velocities we observed in the absence of OM allowed for
a larger OM-induced decrease to be observed as was found with
�-cardiac myosin (26). However, the mechanism of how OM
reduces the sliding velocity in the motility assay is still contro-
versial. Our results suggest one major factor that could account
for the large decrease in velocity in the presence of OM is the
proposed reduction in the ADP isomerization step (K�5A),
which would increase the time myosin is attached to actin (ton).
If we assume a detachment limited model of sliding velocity
(V � duni/ton) (15) and no change in the unitary displacement
(duni), then the velocity in the presence of OM is reduced pro-
portionately to ton. Therefore, it is important to examine duni,
ton, and the rate-limiting step in the M2�-S1 ATPase cycle to
further evaluate this argument. Another possibility that has
been proposed (24 –26) is that OM increases the ton of force
generating cross-bridges by a strain-dependent ADP release
mechanism. In this mechanism there is an internal load placed
on the actin filament because of myosin heads that have com-
pleted their power stroke but are still attached to actin. The
attached time of the force generating cross-bridges increases
because they have to work against the internal load and adapt by
slowing their ADP release rate constant. However, there is cur-
rently no direct evidence for changes in strain-dependent ADP
release in the presence of OM.

We demonstrate the density dependence of in vitro motility
is very unusual in the presence of OM, especially at low ionic
strength. The trend of the increase in velocity at lower densities
suggests that with fewer heads available there is a reduction in
the drag forces that slow the velocity. These drag forces could
come from post-power stroke strongly bound heads or weakly
bound non-force generating heads. The weakly bound states
are strongly affected by increases in ionic strength, which we

demonstrate attenuates the OM-induced inhibition of actin
sliding. Thus, our results suggest that the inhibition by OM can
be attenuated by reducing the number of heads available to
interact with the actin filament, which can be altered by chang-
ing the ionic strength or the motor density. Our results are
consistent with a population of myosin heads trapped in a weak
actin binding state that contributes to the drag forces that slow
actin filament sliding. However, the sliding velocities observed at
the highest ionic strength measured did not return the velocity to
the values in the absence of OM. Thus, we propose that both the
increase in ton of force generating heads, by strain-dependent
and/or non-strain-dependent mechanisms and drag forces from
weakly bound non-force generating heads contribute to the
reduced in vitro motility sliding velocity in the presence of OM.

Impact of OM on Cardiac Muscle Mechanics—Studies of the
impact of OM on cardiac muscle mechanics are conflicting, but
have some common findings. The initial studies fit well into a
hypothesis that OM increases the rate of transition into the
strong binding states and explains the enhanced force observed
in the corresponding muscle fiber studies (6). Further studies
on rat myocardium demonstrated an increase in calcium sen-
sitivity with a slowed kinetics of force development and slowed
relaxation (22). Recent studies have examined the impact of
OM on human myocardium and found that OM increases iso-
metric force at sub-maximal calcium concentrations and slows
cross-bridge detachment and recruitment (23). Our study adds
to these studies by further examining the impact of OM on
human myocardium in a dose-dependent manner. We find an
increase in calcium sensitivity with little change in steady-state
force at maximum calcium concentrations. In addition, we
observe a decrease in the rate of force development. We pro-
pose that the rate of force development could be altered by the
weakly bound non-force generating cross-bridges or slow
detachment of cross-bridges due to a slower ADP isomeriza-
tion. The ionic strength of the muscle fiber experiments was
slightly higher (180 mM) than the highest ionic strength in
motility measurements where we still observed a large inhibi-
tion of the sliding velocity. Overall the muscle mechanic studies
demonstrate that OM may help enhance force at lower calcium
concentrations, whereas OM also has the potential to slow
force development and reduce shortening velocity.

FIGURE 8. Impact of OM on the contractile properties of human myocardium. A, OM did not change the maximum force developed by human myocardium
in solutions with a pCa value of 4.5. B, OM decreased calcium sensitivity (pCa50) in a dose-dependent manner. C, OM decreased the rate of force development
(ktr) in a dose-dependent manner.
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The results from clinical trials demonstrate that OM can
improve systolic ejection time and stroke volume (18). How-
ever, end diastolic volume was reduced, which is in agreement
with an impact on slowed relaxation kinetics. In addition, some
patients experienced ischemia at higher doses. A larger phase II
clinical trial found OM was well tolerated and confirmed pre-
vious reports of increases in systolic ejection time, although
there was no improvement in the primary end point of dyspnea
(20). Another study suggests OM causes an increase in oxygen
consumption, which could impact bioenergetics in long term
treatment regimens (43). Overall, it appears that dosing could
be critical to receive the maximum benefits of the OM-induced
increase in force at submaximal calcium without impacting the
rate of force development and shortening velocity.

Summary—We have performed a thorough analysis of human
M2�-S1 in the presence and absence of OM using both in vitro
motility and solution ATPase studies. We complement this
work with an investigation of the impact of OM on human
cardiac muscle mechanics. Our results support a model that
suggests OM slows ATPase cycle kinetics by slowing the tran-
sition between actomyosin�ADP states which results in an
increase in duty ratio. OM also results in a population of cross-
bridges trapped in a weak actin binding state with slow product
release. The enhanced duty ratio increases the time period that
myosin heads are attached to the thin filament in cardiac mus-
cle which cooperatively activates the thin filament, enhances
calcium sensitivity, and increases force at low calcium without
changing steady-state force at maximum calcium. The negative
impact of OM appears to be that it slows force development and
could slow shortening velocity and may cause ischemia at high
doses. Despite these potential drawbacks, an appropriate dose
may provide a critical boost to contractile force in systolic heart
failure patients. In addition, OM is an interesting proof of con-
cept drug that may pave the way for future treatments that
directly interact with contractile proteins to enhance the force
and velocity properties of cardiac muscle.

Experimental Procedures

Reagents—ATP and ADP were prepared from powder (44).
Omecamtiv mecarbil (CK-1827452) was purchased from Sell-
eck Chemicals or AdooQ Bioscience. Omecamtiv mecarbil was
dissolved in DMSO at a concentration of 10 mM. All solution
experiments were performed in MOPS20 buffer (10 mM MOPS,
pH 7.0, 20 mM KCl, 1 mM EGTA, 1 mM MgCl2, 1 mM DTT) with
the addition of appropriate KCl concentrations as indicated.
2�-Deoxy-ADP and 2�-deoxy-ATP labeled with N-methylan-
thraniloyl at the 3�-ribose position (mantADP and mantATP,
respectively) were purchased from Jena Biosciences.

Construction of Expression Plasmids—The human cardiac
myosin cDNA (AAA5187.1) was purchased from Thermo Fisher
Scientific. PCR amplification was used to subclone the M2�-S1
construct (amino acids 1–843) into the pshuttle vector (a gift from
Dr. Don Winkelmann). M2�-S1 was engineered to contain an
N-terminal FLAG tag sequence and C-terminal Avi tag sequence.

Recombinant Adenovirus-based Expression and Purification
of M2�-S1 in C2C12 Cells—The production of high titer adeno-
virus was performed by a method developed in the Winkel-
mann laboratory (24, 45). Homologous recombination was

used to produce pAdEasy recombinant adenovirus DNA
(pAd.M2�-S1) by transforming the pshuttle.M2�-S1 into Esch-
erichia coli BJ5183 cells. The pAd.M2�-S1 was transformed
into XL-10 Gold cells for amplification, and the pAd.M2�-S1
DNA was digested with Pac1 and transfected into Ad293 cells
to allow for virus packaging and amplification. The Ad293 cells
were grown in DMEM supplemented with 10% fetal bovine
serum. The large scale virus preparation was performed by
infecting 60 plates (145 mm diameter). The virus was harvested
with freeze-thaw cycles followed by CsCl density sedimenta-
tion. The final virus titers were typically 1010 to 1011 pfu/ml.

C2C12 cells grown to 90% confluence in DMEM supple-
mented with 10% fetal bovine serum (typically 20 –30 145-mm
diameter plates) were differentiated by changing the media to
DMEM supplemented with 10% horse serum and 1% fetal
bovine serum. The C2C12 cells were infected with recombinant
adenovirus (5 � 108 pfu/ml) diluted into differentiation media.
The media were changed after 2 days, and cells were harvested
on day 7. The cells were lysed with a 50-ml Dounce in lysis
buffer (50 mM Tris, pH 7.0, 200 mM KCl, 2 mM ATP, 1 mM ATP,
0.5% Tween 20, 0.01 mg/ml aprotinin, 0.01 mg/ml leupeptin, 1
mM PMSF) and spun two times for 15 min at 25,000 rpm in a
Ti50 rotor at 4 °C. The supernatant was added to a 1-ml anti-
FLAG M2 resin column, washed with wash buffer (10 mM Tris, pH
7.5, 200 mM KCl, 1 mM EGTA, 1 mM EDTA, 2 mM MgCl2, 2 mM

ATP, 1 mM DTT, 0.01 mg/ml aprotinin, 0.01 mg/ml leupeptin, 1
mM PMSF), and eluted with wash buffer containing FLAG peptide
(0.167 mg/ml). The eluted M2�-S1 was subsequently precipitated
with ammonium sulfate and dialyzed into MOPS20 buffer over-
night at 4 °C. M2�-S1 was biotinylated for in vitro motility studies
by incubating M2�-S1 with BirA (10 �g/ml) for 1 h at 25–30 °C,
and subsequently precipitated with ammonium sulfate and dia-
lyzed into MOPS20 buffer overnight at 4 °C (46).

M2�-S1 purity was assessed by Coomassie-stained SDS-poly-
acrylamide gels, and protein concentration was determined by
Bradford assay using BSA as a standard. Similar results were
obtained by measuring the absorbance and using the predicted
extinction coefficient (�280 � 1.38 � 105 M�1�cm�1). Actin was
purified from rabbit skeletal muscle using an acetone powder
method (47). The actin concentration was determined by absor-
bance at 290 nm (�290 � 2.66 � 104 M�1�cm�1). A molar equiva-
lent of phalloidin was added to stabilize F-actin.

Mass Spectrometry—Expression of M2�-S1 light chain iso-
forms was determined by liquid chromatography-tandem mass
spectrometry (LC-MS/MS). The myosin light chains associated
with the M2�-S1 were separated on SDS-polyacrylamide gels
and stained by Coomassie. The two resultant low molecular
mass bands (�22 and 19 kDa) were excised from the gel,
destained with 50% acetonitrile, and digested with 1 �g of tryp-
sin (Promega) in 50 mM ammonium bicarbonate as described
(48). The resultant peptides were reconstituted in 0.05% hepta-
fluorobutyric acid and separated on an Acquity UPLC HSS T3
column (100 Å, 1.8 �m, 1 � 150 mm) (Waters) attached to a
Dionex UltiMate 3000 HPLC (Dionex). The HPLC effluent was
directly injected into a Q Exactive Hybrid Quadrupole-Or-
bitrap mass spectrometer through an electrospray ionization
source (Thermo Fisher Scientific). Data were collected in data-
dependent MS/MS mode with the top five most abundant ions
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being selected for fragmentation. Peptides were identified from
the resultant MS/MS spectra by searching against a mouse
database (downloaded from UniProt 2/15) using SEQUEST for
running the Proteome Discoverer 2.1 software (Thermo Fisher
Scientific). Peptide oxidation was accounted for by addition of
15.99 and 31.99 Da to each methionine residue. All MS/MS
fragmentation spectra were manually confirmed. The area
under each deisotoped LC peak was determined using Pro-
teome Discoverer 2.1 (Thermo Fisher Scientific).

Steady-state ATPase Activity—Steady-state ATP hydrolysis
by M2�-S1 (100 nM) in the absence and presence of actin (0 – 60
�M) was examined by using the NADH-linked assay (49 –52)
with a final MgATP concentration of 1 mM. The assay was per-
formed in an Applied Photophysics stopped-flow apparatus
(Surrey, UK) in which the NADH absorbance at 340 nm was
monitored continuously for 200 s. The ATPase rate at each
actin concentration was determined, and the Michaelis-Men-
ten equation (V0 � (kcat [actin])/(KATPase � [actin])) was used
to determine kcat and KATPase, where V0 is the ATPase rate in
the absence of actin; kcat is the maximal ATPase rate, and
KATPase is the actin concentration at which the ATPase activity
is half-maximal. The data at each actin concentration repre-
sents an average of 2–3 protein preparations.

Actin Co-sedimentation Assay—The steady-state actin affin-
ity of M2�-S1 in the presence of ATP was measured using an
actin co-sedimentation assay. M2�-S1 (0.2 �M) was equili-
brated with various actin concentrations (0 – 60 �M) in
MOPS20 buffer containing the ATP regeneration system (20
units�ml�1 pyruvate kinase and 2.5 mM phosphoenolpyruvate).
We added 1 mM ATP and immediately centrifuged the samples
for 8 min at 25 °C (TLA.120.1 rotor at 120,000 rpm). The super-
natant and pellet were examined by SDS-PAGE followed by
Western blotting, and the biotinylated M2�-S1 was detected
using a streptavidin-alkaline phosphatase conjugate. The inten-
sity of the M2�-S1 bands was examined using ImageJ, and the
fraction bound was determined using the equation pellet/(su-
pernatant � pellet). The plot of fraction bound as a function of
actin concentration was fit to a hyperbolic function to deter-
mine the steady-state actin affinity (Kactin).

Transient Kinetic Studies—The stopped-flow apparatus
equipped with an excitation monochrometer (2-nm band pass
filter) and appropriate emission filters was used to examine key
steps in the actomyosin ATPase cycle of M2�-S1. The mant-
labeled nucleotides were excited at 290 nm, and the emission
was measured with a 395-nm long pass filter. The fluorescence
transients were fitted using custom software provided with the
instrument or with GraphPad Prism, and errors are reported as
standard errors of the fit. All concentrations listed are final
unless otherwise noted.

In Vitro Motility Assay—The actin filament sliding assay was
performed as described previously (53) except for the method
of adhering the myosin to the surface. Microscope coverslips
were coated with 1% nitrocellulose in amyl acetate (Ladd
Research). The surface was coated with streptavidin (0.1
mg/ml) and blocked with BSA (1 mg/ml) before the addition of
biotinylated M2�-S1 (loading concentration, amount added to
the flow cell, was varied between 0.24 and 2.0 �M). Unlabeled
actin (2 �M) followed by an ATP (2 mM) wash was used to

prevent interactions with dead heads. Actin labeled with either
rhodamine phalloidin (DS Red filter; excitation/emission: 545/
620 nm) or Alexa (GFP filter; excitation/emission, 500/535 nm)
was visualized by fluorescence microscopy. An activation
buffer with an appropriate concentration of DMSO or OM was
added to the flow cell to initiate motility. Activation buffer
contained the following: MOPS20 buffer, 0.35% methylcellu-
lose, 2.5 mM phosphoenolpyruvate, 20 units�ml�1 pyruvate
kinase, 0.1 mg�ml�1 glucose oxidase, 5 mg�ml�1 glucose, 0.018
mg�ml�1 catalase, and 2 mM ATP. The slide was promptly
viewed using a NIKON TE2000 microscope equipped with a
�60/1.4NA phase objective and a Perfect Focus System. Images
were acquired every second for 3 min or every 15 s for 10 min in
the absence and presence of OM, respectively, using a shutter-
controlled Coolsnap HQ2-cooled CCD digital camera (Photo-
metrics) binned 2 � 2. Temperature was maintained at 26 �
1 °C and monitored using a thermocouple meter (Stable Sys-
tems International). Image stacks were transferred to ImageJ
for analysis via MTrackJ (54) and corrected for drift using
StackReg. The average velocity was determined by tracking
actin filaments manually for each condition (e.g. the path of
each filament was determined by tracking the filament on a
frame-by-frame basis, which allowed determination of average
velocity). The actin filament lengths were measured using the
length tool in ImageJ.

The number of myosin heads on the motility surface was
measured using an NH4-ATPase assay (34, 55). We evaluated
the number of moles of phosphate produced in a motility flow
cell chamber and compared that with a standard curve of moles
of phosphate produced per concentration of M2�-S1. To deter-
mine the number of heads available per �m of actin filaments,
we assumed that M2�-S1 could interact with a 20-nm band of
the actin filament (10 nm of either side of the filament). The
plot of the relative velocity as a function of myosin heads avail-
able (33, 34) was utilized to demonstrate the relative difference
in duty ratio in the presence of OM.

The plots of the relative ATPase and motility as a function of
OM concentration were fit to Equation 1,

y � Bottom 	 	Top-Bottom
/	1 	 10ˆ	x 
 logIC50



(Eq. 1)

where x � OM concentration, and y � relative ATPase activity
or sliding velocity, and Bottom and Top are the associated
plateaus.

Human Tissue—The cardiac samples used in this study were
obtained from patients at the University of Kentucky who had
end-stage heart failure using the procurement system described
by Blair et al. (56). Briefly, through-wall sections of the distal
anterior region of the left ventricle were obtained from hearts
that had been explanted during a cardiac transplant. Samples
weighing �500 mg were dissected from these sections, placed
in 2-ml cryogenic vials, and snap-frozen in liquid nitrogen. The
vials were subsequently stored in the vapor phase of liquid
nitrogen at �150 °C until use. The experiments described in
this study used specimens isolated from the sub-endocardial
region of eight patients. All procedures were approved by the
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University of Kentucky Institutional Review Board, and the
subjects gave informed consent.

Preparations and Experimental Setup—Multicellular prepa-
rations were obtained by mechanical disruption followed by
chemical permeabilization using 1% v/v Triton X-100 detergent
(57). Suitably sized preparations were attached between a force
transducer (resonant frequency, 600 Hz; model 403, Aurora Sci-
entific, Aurora, Ontario, Canada) and a motor (step time 0.6 ms;
model 312B, Aurora Scientific) and stretched to a sarcomere
length of 2.24 �m in a solution with a pCa (��log10[Ca2�]) of 9.0.
The mean length of the preparations was 1055 � 229 �m. The
cross-sectional area was 5.87 � 2.42 � 10�8 m2 (estimated assum-
ing a circular profile). Experiments were conducted at 15 °C using
SLControl software (58).

OM Preparation and Incubation of Samples—Solutions with
pCa values ranging from 9.0 to 4.5 and OM concentrations of
0.1, 1.0, or 10 �M were made by adding suitable amounts of OM
dissolved in DMSO. The final percentage of DMSO in every
experimental solution was 0.67%. Preparations were immersed
in a pCa 9.0 solution containing 0 (control), 0.1, 1.0, or 10.0 �M

for at least 3 min between trials. The ionic strength was held
constant at 180 mM in all solutions.

Mechanical Measurements—Pilot tests showed that OM was
difficult to wash out of the multicellular preparations. Each
preparation was therefore exposed to only one concentration of
OM (0, 0.1, 1.0, or 10 �M). Specimens were initially activated in
a solution with a pCa value of 4.5. Once force reached steady
state, the rate of tension recovery, ktr, was measured by rapidly
shortening the preparation by 20%, holding it at the short
length for 20 ms, and then re-stretching the preparation to its
original length. The ktr was subsequently calculated by fitting
the portion of the force record immediately after the re-stretch
with a single exponential function of the form F(t) � A � B(1
�exp(�ktrt)). In this equation, F(t) is the force at time t, and A
and B are constants. Calcium sensitivity (pCa50) was deter-
mined by repeating the force measurements with different
solutions that had pCa values in the range 9.0 to 5.0. pCa50
values were calculated by fitting the resulting data to a modified
Hill equation of the form F � Fpas � FCa ([Ca2�]n/([Ca2�]n �
[Ca2�

50]n)), where Fpas is the force measured in pCa 9.0 solu-
tion; FCa is Ca2�-activated force; n is the Hill coefficient, and
[Ca2�

50]n is the free Ca2� concentration required to develop
half the maximum Ca2�-dependent force.

Statistics for Muscle Mechanics on Human Samples—Experi-
ments were performed using a total of 46 multicellular prepara-
tions from eight hearts. Data were analyzed using linear mixed
models that allowed for the fact that multiple samples were ana-
lyzed from each heart. Compound symmetry was assumed for the
covariance structure, and post-hoc analyses were performed using
Tukey-Kramer corrections. p values less than 0.05 were consid-
ered significant. Data are reported as mean � S.E.
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50. Dosé, A. C., Ananthanarayanan, S., Moore, J. E., Corsa, A. C., Burnside, B.,
and Yengo, C. M. (2008) The kinase domain alters the kinetic properties of
the myosin IIIA motor. Biochemistry 47, 2485–2496

51. Quintero, O. A., Moore, J. E., Unrath, W. C., Manor, U., Salles, F. T., Grati,
M., Kachar, B., and Yengo, C. M. (2010) Intermolecular autophosphory-
lation regulates myosin IIIa activity and localization in parallel actin bun-
dles. J. Biol. Chem. 285, 35770 –35782

52. De La Cruz, E. M., Sweeney, H. L., and Ostap, E. M. (2000) ADP inhibition
of myosin V ATPase activity. Biophys. J. 79, 1524 –1529

53. Kron, S. J., Toyoshima, Y. Y., Uyeda, T. Q., and Spudich, J. A. (1991) Assays
for actin sliding movement over myosin-coated surfaces. Methods Enzy-
mol. 196, 399 – 416

54. Meijering, E., Dzyubachyk, O., and Smal, I. (2012) Methods for cell and
particle tracking. Methods Enzymol. 504, 183–200

55. Trybus, K. M. (2000) Biochemical studies of myosin. Methods 22, 327–335
56. Blair, C. A., Haynes, P., Campbell, S. G., Chung, C., Mitov, M. I., Dennis,

D., Bonnell, M. R., Hoopes, C. W., Guglin, M., Campbell, K. S. (2016) A
protocol for collecting human cardiac tissue for research. VAD J. 2, 11/12

57. Haynes, P., Nava, K. E., Lawson, B. A., Chung, C. S., Mitov, M. I., Campbell,
S. G., Stromberg, A. J., Sadayappan, S., Bonnell, M. R., Hoopes, C. W., and
Campbell, K. S. (2014) Transmural heterogeneity of cellular level power
output is reduced in human heart failure. J. Mol. Cell. Cardiol. 72, 1– 8

58. Campbell, K. S., and Moss, R. L. (2003) SLControl: PC-based data acqui-
sition and analysis for muscle mechanics. Am. J. Physiol. Heart Circ.
Physiol. 285, H2857–H2864

Impact of Omecamtiv Mecarbil on Cardiac Myosin

3778 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 292 • NUMBER 9 • MARCH 3, 2017

http://www.jbc.org/


Unrath, Michael J. Previs, Kenneth S. Campbell and Christopher M. Yengo
Anja M. Swenson, Wanjian Tang, Cheavar A. Blair, Christopher M. Fetrow, William C.

Cardiac Muscle
Resulting in Increased Calcium Sensitivity and Slowed Force Development in 

-Cardiac MyosinβOmecamtiv Mecarbil Enhances the Duty Ratio of Human 

doi: 10.1074/jbc.M116.748780 originally published online January 12, 2017
2017, 292:3768-3778.J. Biol. Chem. 

 10.1074/jbc.M116.748780Access the most updated version of this article at doi: 

 Alerts: 

When a correction for this article is posted•
When this article is cited•

 to choose from all of JBC's e-mail alertsClick here

Supplemental material:
 http://www.jbc.org/content/suppl/2017/01/12/M116.748780.DC1

 http://www.jbc.org/content/292/9/3768.full.html#ref-list-1
This article cites 57 references, 24 of which can be accessed free at

http://www.jbc.org/lookup/doi/10.1074/jbc.M116.748780
http://www.jbc.org/cgi/alerts?alertType=citedby&addAlert=cited_by&cited_by_criteria_resid=jbc;292/9/3768&saveAlert=no&return-type=article&return_url=http://www.jbc.org/content/292/9/3768
http://www.jbc.org/cgi/alerts?alertType=correction&addAlert=correction&correction_criteria_value=292/9/3768&saveAlert=no&return-type=article&return_url=http://www.jbc.org/content/292/9/3768
http://www.jbc.org/cgi/alerts/etoc
http://www.jbc.org/content/suppl/2017/01/12/M116.748780.DC1
http://www.jbc.org/content/292/9/3768.full.html#ref-list-1
http://www.jbc.org/


	
Figure S1:  Sequence alignments of murine essential and regulatory light chains with the 
ventricular human cardiac isoforms. A) The two murine essential light chains present in our M2β-
S1 construct, myosin light chain 1/3 (UniProt - P05977) and myosin light chain 4 (Uni-Prot-
P09541), were 75% and 79% identical and 83% and 91% similar, respectively, to the human 
myosin light chain 3 (P08590). B) The murine regulatory light chain present in our M2-βS1 
construct, myosin regulatory light chain 2 (UniProt - P97457), is 74% identical and 87% similar 
to the human cardiac muscle regulatory light chain 2 (P10916). The sequences were aligned using 
Jalview with the similarity of each residue colored based on BLOSUM62 score. 
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