22 research outputs found

    Demonstration of the 5GUK Exchange: A Lightweight Platform for Dynamic End-to-End Orchestration of Softwarized 5G Networks

    Get PDF
    We demonstrate the 5GUK Exchange, a lightweight platform which enables end-to-end network service orchestration allowing users to combine network services offered by multiple 5G network domains, while also abstracting the infrastructure specific information of each domain

    On Monolithic and Microservice deployment of Network Functions

    Get PDF
    Network Function Virtualization (NFV) has recently attracted telecom operators to migrate network functionalities from expensive bespoke hardware systems to virtualized IT infrastructures where they are deployed as software components. Scalability, up-gradation, fault tolerance and simplified testing are important challenges in the field of NFV. In order to overcome these challenges, there is significant interest from research communities to scale or decompose network functions using the monolithic and microservice approach. In this paper, we compare the performance of both approaches using an analytic model and implementing test-bed experiments. In addition, we calculate the number of instances of monoliths or microservices in which a network function could be scaled or decomposed in order to get the maximum or required performance. Single and multiple CPU core scenarios are considered. Experimentation is performed by using an open source network function, SNORT and running monoliths and microservices of SNORT as Docker containers on bare metal machines. The experimental results compare the performance of monolith and microservice approaches and are used to estimate the validity of the analytic model. The results also show the effectiveness of our approach in finding the number of instances (monoliths or microservices) required to maximize performance

    On the design of a native Zero-touch 6G architecture

    Get PDF
    The complexity of envisioned 6G telecommunication networks requires an intrinsically intelligent architecture designed to autonomously adapt to dynamics with end-to-end zero-touch service automation operations. Motivated by this vision, this paper tries to formulate concepts and solution aspects towards designing a native Zero-touch 6G architecture. Our discussion concentrates around three main pillars, i.e. (i) introducing Machine Learning (ML) models in the core design of the 6G architecture as native functions rather than add-on model solutions; (ii) distributing 6G functionality to different components up to the extreme edge; to (iii) leverage technology leaps enabling, e.g., the use of multi-access technologies and peer-topeer communications besides the standard cellular connectivity and other centralised functionalit

    Demonstration of the 5GUK Exchange:A Lightweight Platform for Dynamic End-to-End Orchestration of Softwarized 5G Networks

    Get PDF
    We demonstrate the 5GUK Exchange, a lightweight platform which enables end-to-end network service orchestration allowing users to combine network services offered by multiple 5G network domains, while also abstracting the infrastructure specific information of each domain

    VNF Chaining across Multi-PoPs in OSM using Transport API

    Get PDF
    Management and Network Orchestration (MANO) systems permit simultaneous orchestration of compute and network resources. Here, we experimentally demonstrate the integration of Transport API based WIM with Open Source MANO (OSM), for NFV orchestration over optical networks

    IT and Multi-layer Online Resource Allocation and Offline Planning in Metropolitan Networks

    Get PDF
    Metropolitan networks are undergoing a major technological breakthrough leveraging the capabilities of software-defined networking (SDN) and network function virtualization (NFV). NFV permits the deployment of virtualized network functions (VNFs) on commodity hardware appliances which can be combined with SDN flexibility and programmability of the network infrastructure. SDN/NFV-enabled networks require decision-making in two time scales: short-term online resource allocation and mid-to-long term offline planning. In this paper, we first tackle the dimensioning of SDN/NFV-enabled metropolitan networks paying special attention to the role that latency plays in the capacity planning. We focus on a specific use-case: the metropolitan network that covers the Murcia - Alicante Spanish regions. Then, we propose a latency-aware multilayer service-chain allocation (LA-ML-SCA) algorithm to explore a range of maximum latency requirements and their impact on the resources for dimensioning the metropolitan network. We observe that design costs increase for low latency requirements as more data center facilities need to be spread to get closer to the network edge, reducing the economies of scale on the IT infrastructure. Subsequently, we review our recent joint computation of multi-site VNF placement and multilayer resource allocation in the deployment of a network service in a metro network. Specifically, a set of subroutines contained in LA-ML-SCA are experimentally validated in a network optimization-as-a-service architecture that assists an Open-Source MANO instance, virtual infrastructure managers and WAN controllers in a metro network test-bed.Grant numbers : Go2Edge - Engineering Future Edge Computing Networks, Systems and Services.@ 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
    corecore