E% University of
OPEN (2" ACCESS BRISTOL

Moazzeni, S., Jaisudthi, P., Bravalheri, A., Uniyal, N., Vasilakos, X.,
Nejabati, R., & Simeonidou, D. (2021). A Novel Autonomous Profiling
Method for the Next Generation NFV Orchestrators. IEEE
Transactions on Network and Service Management, 18(1), 642-655.
[9295398]. https://doi.org/10.1109/TNSM.2020.3044707

Peer reviewed version

Link to published version (if available):
10.1109/TNSM.2020.3044707

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via IEEE at 10.1109/TNSM.2020.3044707. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights
This document is made available in accordance with publisher policies. Please cite only the

published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

https://doi.org/10.1109/TNSM.2020.3044707
https://doi.org/10.1109/TNSM.2020.3044707
https://research-information.bris.ac.uk/en/publications/4c4436e6-dec7-42fc-b7e3-bde2ad7721e4
https://research-information.bris.ac.uk/en/publications/4c4436e6-dec7-42fc-b7e3-bde2ad7721e4

A Novel Autonomous Profiling Method for the
Next Generation NFV Orchestrators

Shadi Moazzeni, Pratchaya Jaisudthi, Anderson Bravalheri, Navdeep Uniyal, Xenofon Vasilakos,
Reza Nejabati Senior, IEEE, and Dimitra Simeonidou, Fellow, IEEE

Abstract—Currently, telecommunication research communities
are striving towards the adoption of Zero-touch network and
Service Management (ZSM) in Network Function Virtualisation
(NFV) orchestration. Contemporary efforts on adopting Machine
Learning (ML) and Artificial Intelligence (AI) have caused an
upsurge of ZSM application in the VNF space. While ML and
AI complement the ZSM goals for building the intelligent NFV
orchestration, a deep knowledge about the resource consumption
by Network Services (NSs) and its constituent Virtual Network
Functions (VNFs) is required, which would enable AI and ML
models to manage the available resources better and enhance
user experience. In this paper, we propose a Novel Autonomous
Profiling (NAP) method that not only predicts the optimum
network load a VNF can support but also estimates the required
resources in terms of CPU, Memory, and Network, to meet the
performance targets and workload by utilising ML techniques.
Our performance evaluation results on real datasets show that
the output of NAP can be used in the next generation of NFV
orchestration.

Index Terms—Profiling, Monitoring, Predictor, Performance
KPIs, multi-objective resource configuration.

I. INTRODUCTION

S Network Function Virtualisation (NFV) thrives as a

technology that promises the reduction of costs, and
the increase in the operational agility in telecommunication
service providers’ infrastructure [1]], the need for Zero-touch
network and Service Management (ZSM) techniques becomes
more evident.

ZSM pursues the end-to-end automation of network in-
frastructure life cycle with minimum human intervention
through self-configurable, self-healing, self-monitored and
self-optimised networks [1]. Although conventional NFV
Management and Orchestration systems (MANO) are built to
manage Network Services (NSs) in a programmable way, and
therefore promote dynamic and efficient resource usage, they
are designed to operate upon human action. As exemplified
by widespread solutions such as ETSI’s OSM [2] and Linux
Foundation’s ONAP [3]], conventional NFV MANO systems
only go as far as providing application programming inter-
faces (APIs) that present very limited autonomy for a few
selected scenarios, such as scaling or placement. Even in
these scenarios, the provided APIs require extensive input from
human operators to work appropriately: deep practical internal
knowledge about every particular system need to be encoded in
a way that the NFV orchestrator (NFVO) can simply playback
a set of pre-established rules.

Authors are with High Performance Networks Research Group in
Smart Internet Lab, Department of Electrical & Electronic Engineering,
University of Bristol, BS8 1UB, UK, Corresponding author: Sh.Moazzeni
(e-mail: shadi.moazzeni @bristol.ac.uk).

To achieve the ZSM goals, the next generation of intelligent
NFV MANO systems requires deep information about NSs
and their constituent Virtual Network Functions (VNFs) in
order to react proactively to the increase or decrease in
demands.

Historically the act of acquiring deep knowledge about
a computer-centric system is known as Profiling. VNF/NS
Profiling systems use monitoring information to create mathe-
matical or computational models for the performance of VNFs
and VNF chains, known as profiles. Recently, there have been
attempts to use DevOps and ML to extract profiles [4]|—-[13].
Additionally, various works have studied the integration of
these VNF profilers to the existing NFV-MANO architec-
tures [13]; however, the adoption of the profiling solutions
into the standard NFV-MANO systems is still awaiting. We
understand there are certain limitations for such an integration
to be done:

o Firstly, the output of the existing profiling solutions
is not designed to directly assist the orchestration and
management components of such systems, especially in
the life-cycle management of NSs. It either focuses in a
particular task (e.g. placement [13]]) or is not intended
for direct API integration, serving primarily to provide
insights to human operators that are in turn, responsible
for integrating them into existing systems as custom rules
or via other mechanisms.

¢ Secondly, since existing solutions for NFV MANO do
not implement the entire scope of ZSM (instead opting
for providing just a few related features), the usage of
profiling data requires ad-hoc integration.

The objective of the work reported in this paper is to
ease the barriers for the creation of these next-generation
intelligent orchestrators. It proposes a novel ZSM-oriented
profiling method, called NAP (Novel Autonomous Profiling),
whose outputs can be directly used for the several tasks in an
NFV MANO system.

The paper is organised as follows: state-of-the-art NFV
profiling is reviewed in Section [[I} The role of a profiling
system in NFV orchestration is discussed in Section Our
proposed NAP architecture and its associated methods are
described in Section The experimentation and evaluation
results are presented in Section followed by the future
works and conclusion in Section

II. RELATED WORKS

Classical NFV MANO architectures include monitoring
frameworks which allow network operators to check the status
of the deployed network services as well as the deployment

platforms. Resource monitoring complements VNF profiling
and is required by the profiler to generate the correct VNF
profiles. Such monitoring frameworks have been utilised in
a staging environment to manage faults in the deployed
VNFs and Service Function Chains (SFCs) [14], prior to
the deployment on the production environment. These staging
environments can provide an insight to the network operator
for better utilisation of the available resources while optimising
the VNF performance. In this paper, we have created and
integrated a custom resource monitoring solution which assists
our VNF Profiler to perform autonomous profiling.

Further, in this section, we give an overview of the state
of the art NFV profiling related approaches. Table [[] shows a
summary of these works, including their considered resources
and metrics, and the methods used to predict the performance
measurements and/or the required resources.

Some notable efforts [4]-[13]] have been made in the NFV
sphere to induce intelligence into the NFV orchestrator while
profiling the VNFs. The existing studies can be divided into
two parts; Online, for instance, [|13]], and Offline VNF profiling
such as [7], [9], [11]. In addition, the outcome of executing
the NFV profiling measurements can be categorised as:

1) Predicting the feasible metrics or performance K PIs

under a given configuration of resources.

2) Predicting con figuration of resources for achieving
the stated performance KPIs specified in the SLAs. We
have called this category as the “Provisioning problem”.

Authors in [13] introduce a novel zero-touch orchestration
framework called z-Torch, which focuses on the optimal
placement of network function depending on the VNF pro-
file. They used unsupervised learning to create the binding
affinity of the VNFs (based on the resource requirements),
which helps in the decision making for the optimal VNF
placement with minimum migration needs. The solution in
z-Torch utilises the VNF descriptors to get the KPIs for
the VNF and uses some network parameters to estimate the
network load for optimal placement. However, we believe,
the KPIs provided using VNF descriptors are not optimum
and in most cases are over-reserved. Generally, during the
deployment, experimenters create the descriptors and define an
approximate amount of resources needed by the VNF (mostly,
the maximum amount). Whereas, while the NS is running, the
consumption of resources by the VNF can change. Also, the
assumption of resources can vary from actual consumption.
Hence, in our NAP architecture, we utilise the VNF descriptors
to get the initial resource requirements and run further ML
algorithms to find the optimum resource consumption or KPIs
for the targeted VNF performance. z-Torch [13] on the one
hand is an online VNF profiling tool while on the other hand,
is focused on the VNF placement to achieve minimum VNF
migration in future. The work presented in this paper focus
on the profiling of VNF, considering the network load it can
handle for achieving the optimum resource utilisation and is
an offline technique based on ML.

Manuel et al. propose an offline profiling system to profile
VNFs under realistic resource constraints based on the pro-
duction environment data [7]]. They configure the CPU and
measure the application throughput. Subsequently, the same

authors introduce a profiling system to profile the entire SFCs
[6]. Their SFC-based profiling solution treats the entire SFC
as a black box. So, for profiling the whole SFC performance
behaviour, it does not consider the profiling results of each
constituent VNF individually. The authors consider CPU con-
figuration and measure the overall throughput and response
time. However, in both the reviewed works [6], [[7]], the authors
did not utilise ML techniques to improve resource allocation
decisions. Similar to this, another VNF modelling approach
[4]] focus on profiling the VNF as a function of input traffic
rate. Authors have utilised Artificial Neural Networks (ANN)
to predict the CPU utilisation of a VNF by changing the input
traffic rate. Unlike [6], [7]], the work done in [4] utilises ML
methods for prediction but similar to [[6], [[7]], it does not
consider multiple resources (e.g. CPU, Memory, and Network)
at the same time .

Manuel et al., in [9] introduce the concept of time-
constrained profiling (T-cp). They propose an algorithm to
select a limited number of resource configurations under a
limited time. They also used regression techniques to predict
performance values. Although the authors mention that they
can consider more than one resource, in both the Randomised
synthetic performance models and also the Real-world perfor-
mance measurements, each VNF has a single configuration
parameter (CPU time). Besides, they have only predicted
the maximum achieved throughput as the performance mea-
surement assuming unlimited link capacity. Furthermore, to
the best of our knowledge, this paper does not provide any
clarification on how the profiling technique can be used to
tackle the “Provisioning problem”. Instead, our NAP method
has improved the capabilities provided in [9]]. On the one hand,
our NAP method provides algorithms to assign weights to the
resources and select the resources that have a higher impact
on the performance. On the other hand, various performance
metrics and combination of resources are considered simul-
taneously, including network (Link capacity), to compute the
amount of load a VNF can handle. Moreover, by utilising
section search techniques, the optimum load it can support
has been computed. In addition, our proposed NAP method
has provided prediction models to address the “Provisioning
problem”.

Authors in [[10] present a componentised method to predict
if a given system configuration can process a given load. They
produce a prediction label utilising supervised ML technique
to show if the load is in line with the CPU capacities. One
of the advantages of this work is proposing a component
model containing both software and hardware. We believe that
our proposed method can be integrated with this approach
as our method considers more resources and performance
measurements during the model training.

Authors in [[15] have profiled the performance of VNFs
using various modelling techniques. They provided a resource
recommendation algorithm; however, they did not configure
the resources simultaneously, and predicted only one perfor-
mance target. Lastly, the paper [15]] lacks a selection algorithm
to choose the optimum resource configuration. In comparison,
all the three aforementioned shortcomings are addressed in our
proposed method.

TABLE I
SUMMARY OF RELATED WORKS; N/A DENOTES "INFORMATION NOT AVAILABLE”

Ref Considered Resources Considered KPIs/Metrics ML Techniques used Predicted Metrics Prov1§1o|11ng problem
Predicted Resources
CPU ‘ Memory ‘ Network ‘ Comments CPU_UI ‘ MEM_Util ‘ Latency ‘ Comments CPU ‘ Mem ‘ Net ‘ Comments
Online Resource- VNF Profile deviation- Q-Learning, L . optimal VNF-
#Torch |13 v v v Profiling v v v is monitored Unsupervised ML Binding Affinity placement
4 v VNFas a function of 4 Artificial NN CPU Consumption | ¢/
Offline P“‘;ﬁ“"g e |y Throughput N/A N/A N/A
SEC profiling etc. v Thmughpul_and N/A N/A N/A
16 Response time
SVRPRK, DTRP,
WRVS?2 ete. |9 v N/A LRP, RRP Throughput N/A
componentised CPU & Server shared . " « FP)als - }
approach {10 v resources,VNLCP,VL v Packet loss, *Delay Supervised ML Load N/A
B . (Packetsize,# of flows) Regression, kNN, Packet Rate
proficbased e, |/ v Bandvidh allocation or Interpolation, ANN. or
Y (file size,cache hit ratio) Curve Fit Response time
Proposed Method MIMO GRNN,
(NAP) v v v v v d RF, and MLP MIR v v v

Predicting more than one performance measurement is
investigated in [11] and [16]]. Authors in [16] suggest the
multiple-input-multiple-output (MIMO) model using a general
regression neural network (GRNN) to simultaneously estimate
the amount of five traffic-related environment pollutants (SOx,
NOx, NH3, NMVOC, and PM10). In addition, the accuracy
of the model was enhanced by considering various error
metrics. Thus, this approach encouraged us to utilise this
MIMO method besides the other ML techniques in profiling
the VNFs. On the other hand, [11]] presents queuing-based
modelling for SFC as well as a method to perform automatic
scaling by considering only the overloaded individual VNFs.
In their proposed method, metrics including the service rates
and packet arrival rates are considered to predict performance
measurements such as latency, throughput, and response time.
The use of queuing theory seems to be an auspicious method
to be utilised in our future work. However, the configuration
of resources such as CPU, Memory, and Link capacity is
not tackled in [11], which is very critical for profiling and
is addressed in our proposed method.

The majority of the existing approaches provide methods
to predict performance metrics under given resources (first
category introduced at the beginning of this section). In
contrast, less work focus on the “provisioning problem” to
predict the required resources to achieve the given KPIs
(second category). However, as can be seen in Table[l] none of
them targets the two categories simultaneously. Furthermore,
the numerical results in Section [V] show that based on the
type of VNF under profiling, some resources have a more
significant impact on increasing or decreasing the performance
KPIs comparing with the other resources. So, it is important
to assign weights to the resources based on their impact on
the performance KPIs. Then, given the limitation of profiling
time and the fact that all possible configuration of resources
cannot be selected and tested, the profiler should select only
the resources that have a greater impact on the KPIs (with a
higher weight) for that VNF type. Our proposed NAP method
targets both the categories utilising several ML techniques
and considers the weight of various resources such as CPU,
Memory, and Network in profiling the given VNF in a limited
profiling time. In addition, it predicts the optimum network
load that a VNF can support while achieving all the KPIs.

III. THE ROLE OF PROFILING IN NFV ORCHESTRATION

When deploying an NS in the form of an SFC composed
by multiple VNFs, various resources like virtual CPU cores,
Memory, and NIC should be assigned to the involved VNFs to
meet different performance targets [[17]], or even fulfil Service
Level Agreements (SLAs). Moreover, the orchestrator must
ensure that virtual links are established accordingly to support
the demands in these VNFs, which determines the underlying
network requirements (such as bandwidth, maximum delay).

Therefore, the main role of a profiling system is to uncover
this relationship between the resource configuration, service
demand and performance targets. The conventional approach
for NFV profilers is to expose the VNFs or NSs to a varying
traffic source while recording resource usage in order to obtain
a model that correlates the service demand and resource
usage. This approach is derived from the assumption that the
maximum service demand supported (D) is a function (f) of
the resource configuration ([?), and optionally the performance
goals (P), D = f(R, P). Thus, the generated profile (f’) is a
model that approximates this function, f'(R,P) ~ f(R, P).
It is important to observe that the profile does not necessarily
correspond to a mathematical function, sometimes it can be
given by a computer program, simulation, parameters of an
ML technique or even by something as simple as a table.

Alternatively, a slightly different approach might attempt
to approximate a function (g) that correlates the observed
performance (FP,) with the resource configuration and the
observed service demand (D,), P, = g(R, D,). While both
attempts are valuable (e.g. to assess a specialist during the
design of the VNF graph and its scaling rules or a business unit
during the evaluation of SLAs), they are not able to directly
provide values for resource configuration to the NFV MANO
system. Instead, an additional convoluted technique must be
applied (such as search algorithms, reinforcement learning, or
cognitive techniques).

As indicated by Figure |1} a simple analogy between classi-
cal control systems [18] and an intelligent NFV MANO system
evidence that, in order to be directly used, the obtained profile
(k") should compute the resource configuration based on the
performance goals and the monitored metrics, R = h(D, P),
(D, P) = h(D, P); similarly to the classical controller that
calculates the actuation input based on a reference and the
values measured by a sensor. This proposed approach is used

output
@ sz~ (A {systen} 72

next gen. intelligent

(b) |NFV MANO — >

VIM
NFVO /

|
Profile VNFM
Future Demand
Assessment

Mon

_— packets
performance,
goals

“|Profi1er‘]|

Fig. 1: Analogy between (a) classical control loops containing

a controller (C), actuators (A) and sensors (S), and (b) next
generation intelligent NFV MANO systems, that feed metrics
acquired by a monitoring system (Mon) into a model (Profile) to
calculate the appropriate resource configuration.

in the following sections as the basis of the design of an
advanced NFV Profiler.

The information contained in the profiles of the different
VNFs composing an NS are fundamentally required by an
intelligent MANO system in two distinct phases.

During day 1 deployment, the NFVO uses these models
to estimate the resources needed for the NS instantiation
based on the expected demand for the service. This resulting
resource configuration can then be considered as input for
VNF placement algorithms and topology optimisations.

During day 2 operations, the NFVO will use the same
models to perform common NS life-cycle management tasks.
In other to do that, the NFVO continuously receives data
from the existing monitoring tools — ideally aided by a series
of algorithms that assess the demand for the service in the
near future — and based on this data identifies the main
VNFs responsible for eventual performance degradation. After
the identification, the NFVO will act together with the VNF
Manager (VNFM) to eliminate the existing (or potential)
bottlenecks via horizontal and vertical scaling. In this phase,
the profile is again used to estimate the resource configuration
that is more appropriate for the new demand target. Migration
is also considered when scaling VNFs using the current
Network Functions Virtualisation Infrastructure (NFVI) nodes
or networks result in sub-optimal performance. Finally, the
Virtual Infrastructure Manager (VIM) interfaces are triggered
to enforce the new resource configuration.

Notice that in this context, profiling can be either done
completely offline and simply loaded into the NFV MANO
system or integrated into it. While offline profiling simplifies
the complete implementation, integrated - or online - profilers
can dynamically revise existing models based on up-to-date
metrics coming from the monitoring system, which in theory,
should improve accuracy.

It is important to distinguish between reactive and
proactive usages of such profiles in day 2 operations.
Reactive profile-based MANQO can be understood in the
light of the control system analogy (as indicated in Figure [I)).

As the delay related to training the models is negligible,
once the VNF performance degrades, the NFVO shall use
the information in the profile (“Performance dataset” or
utlise the Predictor manager) to re-configure the VNF (or
more generally, the VNF chain) as an attempt to recover its
previous performance characteristics. The same reasoning
can be applied for reducing the allocation of resources
upon decreasing demand. On the other hand, proactive
profile-based MANO is achieved once the NFVO has
some form of assessment about the future demand (or
input rates), e.g., based on hand-written policies or another
separate mathematical/ML model that uses historical data.
With this kind of information, the NFVO can change the
configurations before observing any performance impairment
in order to be more resilient. For instance, by utilising our
predictor manager, it can predict the absolute configuration
of resources that is required for meeting with the given KPIs
and Optimum MIR in the target environment, and run the
VNF with the proposed configuration of resources, proactively.

TABLE II
NOTATIONS & DEFINITIONS

Parameter Definition

Profiling Workflow:

t The profiling timer.

Pref_Conf The Preferred configuration of resources allocated to
the VNF.

Pref_Confr The Preferred configuration of a res. (R) allocated to
the VNF.

Wgr The weight of resource (R).

MI Ry Opt. MIR the VNF can handle with average conf. of
resources.

M1RRr Opt. MIR the VNF can handle with maximum conf.

of the resource R.

Predictor Models and Training:
D Euclidean distance matrix of dimension p X m.

Evaluation metrics:

SSRrES The residual sum of squared errors of the regression
model.

SStor The total sum of squared errors.

Yi The actual or the observed value for the experimental
unit i.

Ui The predicted or the fitted value for the experimental
unit i.

Y The mean of y value.

I'V. PROFILER DESIGN

To fulfil the vision presented in Sec. while addressing
the knowledge gaps previously indicated, our proposed NAP
method assimilates several characteristics from related works
(Sec. [), while implementing a new set of algorithms and
procedures. For the sake of simplicity, an offline design is
chosen. Nonetheless, the proposed method can be integrated
into an orchestrator to perform real-time updates on the models
obtained offline, hence achieving dynamic profiling.

Although some works indicate that profiling an entire VNF
chain is more precise than profiling its individual VNFs and
combining the results [6], our implementation can distinguish
every atomic part of a VNF chain, identifying their contribu-
tion to the overall NS. This is a fundamental requirement for

NFV MANQO, as it is a common practice to promote localised
changes in graph topology of the VNF chain during runtime to
respond to demand variations or quality of service degradation,
(e.g., horizontal scaling of bottlenecks, and migration of sub-
parts of the chain). Furthermore, profiling individual VNFs
imposes less resource requirements for the profiler itself:
focused, small tests are simpler, quicker, and cheaper to run.
Also, individual profiles favour composition: not only a service
provider can use individual profiles to compare and choose
between VNFs that execute the same functionality, but also
by re-using already profiled VNFs to compose new chains,
new profiling rounds can be completely avoided. Therefore,
our design focuses on single VNF profiling.

Ideally, each VNF should be profiled in the whole range
of possible input workload values and all available resource
configurations [7|]. However, this leads to an ample space of
multiple parameters and many combinations to test, resulting
in an expensive and overextended measurement period [9].
On the other side, given the huge resource configuration
space of a VNF, and the fact that its re-deployment or re-
configuration takes a considerable amount of time, executing
profiling measurements over the complete configuration space
is infeasible [9]. To overcome this issue, we select and profile
only a small subset of all possible resource configurations.
By design, the Predictor Manager component of our proposed
NAP method creates and trains prediction models. These
models are capable of predicting certain quantities after past
measurements by utilising regression techniques or more com-
plex ML solutions such as MIMO ANN models. The first role
of these models is to accurately predict the Optimum maximum
input rate (Optimum M IR) for previously untested resource
configurations which meet the given KPIs. Their second role
is to calculate the absolute amount of resources required for
meeting both the given KPIs and the Optimum MIR in the
target environment. Both roles can be achieved in parallel by
utilising the ML-based techniques described in Sections
and

A. Profiling Platform

Figure [2| shows the high-level architecture of our NAP
method, including its main building blocks. This architecture
assumes that each VNF is associated with a list of performance
targets (or even SLAs) and relevant profiling parameters. The
VNF descriptor (VNFD) refers to the VNF catalogue, a set of
templates that describe the deployment and operational charac-
teristics of available VNFs as well as their images. As per this,
the VNFDs could also include resource requirements such as
CPU, RAM, and Disk space. Therefore, the VNF Descriptor
and the Profiling Parameters specify which resources should
be tested throughout the profiling process, the minimum and
maximum values per resource, and the performance metrics
to be collected and analysed. The performance targets are
evaluated via KPIs that decide if the VNFs are successfully
handling the workload or not. The Profiler module resides
as part of the Profiling platform and has three main building
blocks: the Weighted Resource Configuration Selector; the
Analyser and Post Processor; and the Predictor Manager.

Performance
Targets &

VNF Descriptor]
SLAs

-
Profiling
Parameters
L

Analyser and

Profiler

Weighted Resource |,

Configuration Post Processor
Selector 7'y
Configuration
of Resources Traffic
and Metwork
- Generator
Filter
L ‘ *
Resource i
. Predictor
Monitor "
VME anager
Instance
Network | |
Monitor

Profiling platform

Fig. 2: High-Level architecture of our proposed NAP method
including the main building blocks

The Weighted Resource Configuration Selector gets the
VNF descriptor, profiling parameters and the list of perfor-
mance targets. It selects a set of resource configurations and
assigns them to the VNF, and then runs it with these allocated
resources. Afterwards, it requests for traffic to be generated
and sent by the Traffic Generator to the VNF instance.
Alongside the help of the Analyser and Post Processor,
it queries the monitoring data from the monitoring tools
(Resource Monitor and Network Monitor) to find and record
the Optimum Maximum Input Rate (Optimum MIR)
that the VNF instance can handle to meet all performance
targets. The outcome of this step is referred to as the “VNF
Performance Dataset”.

The Predictor Manager is designed to create and train
prediction models that are capable of predicting certain quan-
tities, based on past measurements. It has two roles: 1- it
creates a model to accurately predict the Optimum MIR
for previously untested resource configurations in which the
given KPIs can be met; 2- it calculates the absolute amounts
of resources required to meet both the given KPIs and the
Optimum MIR in the target environment. Both above can
be achieved simultaneously by utilising several ML-based
techniques. These offline techniques can meet with the needs
of fairly static network conditions and, hence, be deployed to
such environments with good profiling performance expecta-
tions. Likewise, performance expectations can be also met for
short term period deployments. These trained models can be
used to bootstrap profiling, which can be further continued
with other models such as online trained ones. Finally, the
models that have been used in this work are in practice faster
regarding their response times as well as more accurate under
stable conditions [19], [20]. These models can then be used
by the next generation intelligent NFV MANO (see Figure

[I) to optimise their resource dimensioning decisions. The
weighted selection of the resource configurations as well as
the process of computing the Optimum M IR are described
next in Algorithm [T and in Figure [3]

B. Profiling Workflow

The profiling workflow as shown in Algorithm [T] comprises
five steps; The notations and definitions used are shown in Ta-
ble (I} and corresponding details are provided in the following.
In step (1), the profiler sets the minimum configuration for
all the resources (Pref_Confpr< Min) and runs the VNF
with these allocated resources by calling Run_VNF Function.
Pref_Conf is an array which shows the preferred config-
uration of resources allocated to the VNE' instance. For
example, if the VNF can have 1-16 CPU cores, 128-2048 MB
Memory, and 128-4096 Mbps Link capacity, the minimum
configuration for CPU, Memory, and Link capacity is equal to
1, 128, and 128, respectively. So, Pref_Con f for CPU, Mem-
ory, and Link capacity will be 1, 128, and 128, respectively
(i.e., Pref_Confcpyu < 1, Pref_Confyremory < 128, and
Pref_Confrink capacity < 128). Then, the Algorithm shown
in Figure [3] will be used to find the Optimum MIR the
VNF instance can handle with minimum configuration of
resources while meeting the performance targets.

In a similar way, step (2) sets the maximum configuration
for all the resources. Based on the example given, it will be
Pref_Confcpy + 16, Pref_Confuyemory < 2048, and
Pref_Confrink capacity < 4096. Then it will run the VNF
and will find the Optimum MIR for this configuration of
resources.

In step (3), the profiler allocates the average
configuration of resources to the VNF and will
run it. Following our example, it will be equal to

Pref_Confcpy <+ 8, Pref_Confmemory < 1088,
and Pref_Confrink capacity < 2112. Then, it will find
the Optimum M IR that the VNF can handle with average
configuration of resources; We refer to this traffic rate as the
MIR 404.

In step (4), the profiler computes the weight of each re-
source (W r) by checking its impact on the Optimum MIR.
To check the impact of each resource (R), it selects the
maximum configuration of that resource and the average
for other resources. Then, it will run the VNF with these
allocated resources and will find the Optimum MIR that
the VN F' instance can handle. We refer to this traffic rate as
the M1 Rg. Afterwards, the profiler will compute the weight
of that resource (W) as defined in formula (T)). For instance,
based on the previous example, to find the M I Rcpy and then
the Wepy, the VNF will be executed with 16 CPU cores,
1088 MB Memory, and 2112 Mbps Link capacity. It is worth
mentioning that before computing the weights, the related
input rates were normalised by utilising feature scaling, and
the process of finding each weight is repeated ten times to
improve the accuracy of the weights.

Wg = abs(MIRg — MIR zyy)/MIR 4y, (1)

Finally, through step (5), the selection of resources will be
prioritized by considering their weights (I¥). According to the

Algorithm 1: Weighted Resource Configuration
Selection (WRCS)
Input: VNF, Profiling parameters, Performance targets
Output: Datasets, Weight of each resource (Wg)
1 Function WRCS (Input) :

2 t=0; // t is the profiling timer
3 Profiling step(/):

4 foreach R in Resources do

5 ‘ Pref_Confr < Min;

6 end

7 Call run_VNF(Pref_Conf);

8 Find Optimum M IR through Figure

9 Profiling step(2):

10 foreach R in Resources do

1 | Pref_ConfR < Max;

12 end

13 Call run_VNF(Pref_Conf);

14 Find Optimum MIR through Figure

15 Profiling step(3):

16 foreach R in Resources do

17 | Pref_Confr < Avg;

18 end

19 Call run_VNF(Pref_Conf);

20 MIR pypg < Find Optimum M IR through

Figure [3}

21 Profiling step (4):

22 foreach R in Resources do

23 Pref_Confr <+ Max;

24 Pref_OonfotherResources — AVg;

25 Call run_VNF(Pref_Conf);

26 MIRp < Find Optimum MIR through

Figure [3}
27 Wr =abs(MIRRr — MIR4yg)/ MIRAyg;
28 end
29 Profiling step(J):
30 while ¢t < Profiling time do
31 R < random choice (Resources,WW);
32 Pref_Confgr < Pick a random
configuration for R;

33 Pref_confotherResources — AVg;

34 Call run_VNF(Pref_Conf);

35 Find Optimum MIR through Figure [3}
36 end

37 End Function

38 Function run_VNF (Pref_Conf):

39 Run VNF with Pref_Conf and set the networks;
40 End Function

computed weights of resources, each resource may have a dif-
ferent probability for being selected. So, the profiler randomly
selects a resource R from the list of Resources according
to the relative sequence of their weights. Then, it will select
a random configuration (i.e., a random number between the
minimum and maximum amount) for that resource, R. It
is noted that all the other resources will be configured as
average. Afterwards, the Optimum MIR for this configura-

tion will be computed, and the respective record will be stored.
For instance, if Wopp is greater than the other resources,
the CPU has a higher probability to be selected. Assuming
the profiler has selected the CPU, following our example, the
selected configuration will be equal to Pref_Confopy <
a random number between 1-16, Pref_Confyemory
1088, and Pref_Confrink capacity < 2112. The profiler will
continue this randomly weighted selection of resources and
will add the records to the “VNF Performance Dataset” until
the end of profiling time. This profiling time is specified in
the Profiling Parameters.

C. Method to Find Optimum MIR

v

Inputs] 1. Find overloaded IR
- resource config Inputs

- KPIs - resource config

- min IR - KPls

Outputs -min IR

- optimum MIR Outputs

Effects -max IR

- fill datasets - overloaded IR

¥

Binary Section Search (B55)
between max IR and
overloaded IR

Search Criteria
Highest max IR with
all kPls are met

2. Set traffic generator
with IR value given by B5S
3. Acquire metrics

4, Store in the dataset:
-measured IR
- resource config Y
- metrics
- calculated KPIs

B5S converged false

true
5. Current IR measure
- optimum MIR

®

Fig. 3: Algorithm for Finding the Optimum M IR. Internally it
calls the Algorithm in Figure

Inputs
- resource config
- KPIs

—Omtln IRt 1. Configure traffic generator
NLRLES to produce min IR
- max IR)

- overloaded IR
Effects
- fill datasets

2. Acquire metrics
and calculate KPIs

true All KPls are met false

3. Measured IR

6. Current IR measure | A

-+ max IR - overloaded IR
4. Store in the dataset: 7. Decrease traffic

-max IR back to max IR

-resource config

- metrics

- calculated KPIs
5. Increase traffic

el

Fig. 4: Algorithm for finding the Overloaded IR

As described in previous subsections, the Optimum MIR
is considered as a performance metric. It shows the maximum
load in terms of the traffic rate a VNF instance with an
allocated configuration of resources can handle while meet-
ing the performance targets. To compute this metric, the
Find Owverloaded IR function will be utilised (illustrated
in Figure [4).

o First, the profiler (through the Weighted Resource Con-
figuration Selector) sets the Traf fic_Rate to a given
minimum IR and requests the Traffic Generator to send
UDP packets to the VNF instance with the selected rate.
In our profiling method, the Traffic Generator component
is a “pluggable” component; for the time being, the
implementation is based on iPerf3, which can generate
UDP and TCP packets. So, in case injecting the TCP
packets is needed, we can generate TCP packets and
monitor and profile the performance of VNFs. In the
experiments, UDP was preferred since it results in more
precise throughput measurements.

o Next, the profiler (through the Analyser and Post Pro-
cessor) retrieves the monitoring data and computes the
performance metrics such as CPU utilisation, memory
utilisation and latency.

— While the measured performance metrics meet the
required KPIs; it will record the Traf fic_Rate,
Pref_Conf, the metrics captured from the Monitor-
ing tools and the measured performance correspond-
ing to the required KPIs. In addition, it will feedback
the Weighted Resource Configuration Selector to
increase the amount of Traf fic_rate and send the

increased amount to the VNF instance.

— When any of the measured performance met-
rics stops meeting the performance targets, the
Find Overloaded function will return two traf-
fic rates; The traffic rate that could be handled
by the system referred to as the “Max IR’ and
the increased traffic that resulted into not meeting
the KPIs, called “Overloaded IR”. It is assumed
Min IR can always be handled.

o Then, returning to Algorithm shown in Figure[3] a section
search function such as BSS or Golden Section Search
(GSS) method [21]] will be called recursively to find and
return the Optimum MIR for the VNF instance with
the allocated configuration of resources while allowing
all the given KPIs to meet at the same time.

o Finally, the profiler (through the Analyser and Post
Processor) will add this record to the “VNF Performance
Dataset”.

D. Predictor Models and Training

We investigate three ML alternative techniques employed
by the Predictor Manager to generate the predictor-based
profiles: Multiple-Input-Multiple-Output General Regression
Neural Networks (MIMO-GRNNs), Random Forest (RF), and
Multi-Layer Perceptron (MLP). The corresponding details are
provided below.

1) MIMO-GRNN: A MIMO-GRNN is a type of a feed-
forward neural network that consists of four layers [16]. The
input layer calculates the Euclidean distance between trained
records and test records. The second layer, i.e. the pattern
layer, produces the exponential activation function. The third
layer (summation layer) produces a weighted sum matrix and
an unweighted sum matrix. The cross product of the above
matrices results in multiple outputs. Finally, there is a output
layer for the model prediction.

2) Random Forest: RF is a model encompassing many
decision trees trained together [22]]. Each tree receives features
randomly to produce separate predictions by itself. The most
voted prediction is chosen as the final result, a technique that
is known as Bagging. Important parameters to tune for an RF
include the number of features and the number of trees.

3) Multi-Layer Perceptron: An MLP [23], is a type of
ANN, a feed-forward network that is typically used for ad-
dressing non-linear data. In such a type of network, the number
of hidden layers can be specified following the dataset and the
requirements. To avoid both overfitting and underfitting, an
appropriate setup must be considered regarding the learning
rate, the optimiser, and the activation function for training
profiled datasets.

V. IMPLEMENTATION, DATA ANALYSIS AND EVALUATION

This section provides a detailed description of the ex-
perimental setup, the implementation of our proposed NAP
method, and how to generate and analyse adequate “VNF
Performance Datasets”.

1
[Network Monitor] [Resource Monitor (C-Advisor) 5

iPerf-
Client

Linux Bridge Linux Bridge

Fig. 5: Experiment Setup

A. Experimental setup

In our experiments, the profiling platform was deployed on
a dedicated bare-metal server with a 24-core Intel(R) Xeon(R)
CPU running at 2.40GHz, with 160 GB of RAM. Further to
that, the software specifics are summarised in Table In our
profiling platform, we have profiled two types of VNFs; an
Intrusion Detection System (IDS) - SNORT [24] and a virtual
Firewall (VFW) following the setup shown in Figure 5] vFW
acts as a basic packet filtering to allow or block network traffic
on specified TCP/UDP port numbers. SNORT uses several
detection rules combining signature, protocol, and anomaly
rules to detect and act on any malicious activity. Besides,
SNORT is used in the inline mode where the two interfaces
(depicted in Figure [5) are bridged together to forward the
packets from the IPerf3 client to the IPerf3 server and vice-
versa. It is important to note that our profiling method is
capable of profiling any VNF (black-box approach), not only
the two mentioned.

To profile each VNF, several resources, including CPU,
Memory, and Link Capacity are tested to measure performance
KPIs. The latter KPIs include the Optimum MIR and
Latency, and metrics such as CPU utilisation and Memory
utilisation. As shown in Figure[5} the network latency in terms
of maximum Round Trip Time (RTT) is monitored and logged
in the Network Monitor, which feeds the network monitoring
data to the Profiler. Similarly, the Resource Monitor monitors
the compute resource utilisation by probing into the VNF
instance. Since all the components in the network are hosted
as docker containers, we used cAdvisor [25]] as a Resource
Monitor wrapped around with the custom python APIs to
interface with the Profiler.

Based on Algorithm [I] (Section we profiled each VNF
with the following resource configuration: (a) CPU between
0.3 and 1.0 vCPU cores, (b) memory between 33 and 100
MB, (c) link capacity between 350 and 650 Mbps. For each
resource, the first number shows the minimum and the latter

TABLE III

SOFTWARE USED FOR EVALUATION EXPERIMENTS
Software Function Version
Docker To run VNFs as containers 19.03.5
SNORT Intrusion Detection System (IDS) 2.9.15.1
vFW virtual Firewall docker container 1.6.1
iPerf3 Tool to measure the network 3.1.3
Linux The OS on each machine Ubuntu18.04
cAdvisor The resource monitoring tool Latest
Elasticsearch ~ data storage, search, and analytics engine 7.6.0
Kibana Tool to visualise the Elasticsearch data 7.6.0

one refers to the maximum configuration. The considered
performance metrics and KPIs were: (i) CPU utilisation >
97+3%, (ii) memory utilisation < 98%, (iii) latency <
2.540.5 ms, (iv) IR > 100 Mbps, and (v) total profiling time
< 48h.

B. Generating adequate VNF Performance Datasets

The profiler sets the timer and runs the VNF under profiling
(SNORT or vFW) with minimum configuration of resources.
Then, by sending the traffic(starting from the Min I[R)
through iPerf3, it finds the Optimum MIR that the VNF
instance can handle to meet the performance Metrics and
KPIs’ threshold. Afterwards, it creates a record from the re-
sults. The profiling continues by finding the Optimum MIR
for the maximum and later with the average configuration
of resources and the corresponding records are created. It is
important to mention that the average time to run the docker
container is around 1.5 second and the average time taken
to select the resources utilising binary search for one record
of performance profiles is less than 1.6 minutes. The average
values of obtained Optimum M I Rs related to the maximum,
minimum, and average configuration of resources are shown
in Figure [6] with filters F1, F2, and F3, respectively. Following
this, the profiler uses Algorithm [T] to compute the weight of
each resource and then records the values. Filters F4, F5, and
F6 in Figure[6]show the average values of Optimum M IR for
computing the weights of CPU, Link capacity, and Memory,
respectively. As can be seen in Figure [f] the link capacity
has the greatest impact on the Optimum M IR for vEW than
the other resources. So, it should have a greater weight when
profiling the vFW. In comparison, both CPU and link capacity
significantly affect the Optimum M IR, and their weights are
also higher than the other resource, i.e., memory. The profiler
continues to profile the VNF instance by the weighted random
selection of resource configurations until the end of profiling
time. In addition, it stores the generated “VNF Performance
Dataset” records utilising the Elasticsearch, Logstash, and
Kibana (the Elastic Stack) [26] data repository. Employing
the Elastic stack gives developers the advantage of a ‘store
first, examine later’ philosophy of monitored measurements. In
addition, this dataset can serve the purpose of future analysis
by the next generation of intelligent NFV MANO systems,
while can also be utilised by the prediction models.

641.5 Wb]

473.4
89.06) 333 1 391.9
300 352
335
200 2125 250
100

F1-(Max F2-(Min F3-(Avg Resources) FA-(Max CPU, Avg F5-(MaxLC, Avg F6-(Max Mem, Avg
Resources) Resources) LC, AvgMem) CPU, Avg Mem) CPU, Avg LC)

MSNORT ElvFW

Average Optimum MIR (Mbps)

Fig. 6: Average Optimum M IR annotated with 95% confidence
intervals obtained to compute the weight of resources for SNORT
and VFW.

C. Analysing VNF Performance Datasets

To analyse the effect of various resources such as C'PU
(number of VCPU cores), Network (Link capacity in Mbps),
and Memory (in MB) on the Optimum MIR (in the rate
of megabits per second) the “VNF Performance Dataset”
are explored from the Elastic stack repository and illus-
trated in Figurem a, b, and c, respectively. Noted that for
analysing the effect of each resource, the other resources
are filtered as average. Following Figure SNORT VNF,
a clear correlation between Optimum MIR can be seen
increasing with CPU (a) and Link Capacity (b). This can
be interpreted as the higher the C'PU and Link Capacity,
the greater the load the SNORT can handle, while Memory
seems to have the least correlation on the Optimum MIR.
In comparison, when analysing the performance profiles of
VvEW, the Link Capacity (b) has the greatest effect on the
Optimum MR, while Memory and C PU seem to have the
least correlation on the Optimum M I R. As the profiling time
is limited, these results show the accuracy of our model and
the necessity of computing the weights of various resources
to profile a system for improved overall performance.

D. Evaluation metrics

In what follows, we define the error-based evaluation met-
rics used for comparing the models we introduced in Sec-
tion [[V-D} In brief, we employ Mean Average Error (MAE),
Root Mean Squared Error (RMSE), Mean Absolute Percentage
Error (MAPE), and R-squared values. On the one hand,
MAPE, MAE and RMSE are used to conclude on the best
model approach with respect to datasets. The smaller the value
of these error metrics, the higher the accuracy of prediction.
R-squared, on the other hand, is used to assess how much
the regression line fits with data, and to compare the fitted
regression line to a mean line. Both groups of error metrics
serve important roles for the Prediction Manager in NAP,
by adopting increased accuracy in prediction while assessing
the trend for overfitting or underfitting to training data. The
notations and definitions used in these evaluation metrics are
displayed in Table [

MAE defined in formula (2) is a simple easy to interpret
and is insensitive to outliers’ metric:

1.
MAE = H;Iy vil 2)
This metric is ideal for easy and fast NAP results.

RMSE defined in formula (3) is appropriate for the re-
gression problems that can be faced by the NAP’s Prediction
Manager. Its value is always greater or equal to MAE. RMSE
considers an unequal weighting scheme with large errors being
given a higher weight. However, outliers have an effect on
RMSE, thus they should be removed before training the ML
model. Evidently, RMSE should be used alongside MAE
or other metrics by the Prediction Manager for VNFs with
outlying input traffic.

RMSE = 3)

= 500 SNORT 600 7 40 SNORT
8 U0 z SNORT S 400 I P I 3 3
3 o 2 500 2 350 I = =1 H
x 350 = 100 £ 300
S 300 g 2 5
£ 250 300 £
g 200 £ g 200
£ 5 g 00 £ 10
S w00 B 100 o 100
o S0 o & so
3 ® @
£ o g o g’
z 03 0.4 0.5 0.6 0.7 0.8 0.9 1 § 350 400 450 500 550 600 650 z 30 40 50 60 70 80 90 100
cpy < Link capacity (Mbps) Memory (MB)
(a) (b) (©
vFW
450 VEW & 600 VEW 7 400 VFW
8 400 g 2 3% L by 3 I
500 =
3 0 I I I I 1 —4 = S 0 —t T + L 1
= 300 I — 1 T 1 1 « 400 £ 0
= =
S 250 =
300 £ 200
£ 200 g >
2 10 E 200 E 10
2 100 g & 1o
& s 3 10 g S0
o & ©
% o g o g o
§ 03 0.4 0.5 0.6 0.7 0.8 0.9 1 E 350 400 450 500 550 600 650 z 30 40 50 60 70 80 90 100
< CPU Link capacity (Mbps) Memory (MB)
(a) (b) (©

Fig. 7: The Correlation between (a) CPU, (b) Link Capacity, (c) Memory, and the Optimum M IR per SNORT and vFW, respectively.

Results are annotated with 95% confidence intervals.

MAPE defined in formula @) measures the deviation from
the actual values as a percentage form. Therefore, and unlike
MAE and RMSE, it does not depend on the data size, hence
making it an appropriate auxiliary metric for NAP when facing
limited amounts of training or testing input:

1 n
MAPE = — ;

Y — vil

Yi

x 100 @)

Finally, R-squared (R?) is given by the following formula:

12
_S8rps __ LilWi—4i)
SSror Zz (yi - g)Q
The former formula involves the fraction of the residual sum of
squared errors of the regression model (SSrpg) over the total
sum of squared errors (SStor), subtracted from 1, where y;
is the actual value, y; is predicted value and ¥ is mean value.
Note that the closer the R-square value is to 1, the higher is
the correlation to the mean line.

R?=1

®)

E. Model Parameters Setup & Tuning

1) Predicting the Absolute configuration of Resources: The
first role of the models generated by the Predictor Manager
is to predict the absolute configuration of resources that is
required for meeting with the given KPIs and Optimum MIR
in the target environment. In this experiment, the “VNF Per-
formance Datasets” related to the profiled SNORT and vFW
VNFs are explored from the Elastic stack and each dataset is
divided into a training set and a test set based on a 90%/10%
ratio, respectively. It should be pointed out that before starting
the training process, the data were normalised by utilising
feature scaling. Each model has four input variables under
the category of the KPIs and performance metrics and three
output variables under the category of the resources. The input
variables are CPU utilisation, Memory utilisation, Latency,
and Optimum MIR, while the output variables are the
number of vCPU cores, Memory, and Link Capacity.

The tuning of effective parameters is a prerequisite task for
training ML models. Given that the Multi-Layer Perceptron
(MLP) with Shallow Neural Network Architecture yielded a
low accuracy in our experiments, we proceeded with MLP
with Deep Neural Network Architecture, which resulted in
higher accuracy. The tuned Smoothing factor parameter for
MIMO-GRNN is set as o 0.03 and 0.01, for SNORT,
and vFW, respectively, whereas the number of Trees in the
Random Forest (RF) model is set to 1200 in both cases.
These models are used to predict the absolute configuration
of resources. Table summarises our MLP parameters. It is
worth mentioning that after training the models, predicting the
absolute configuration of resources to meet the required KPIs
utilising the models generated by the Predictor manager only
takes around 44.23, 1.07 and 0.24 second for GRNN-MIMO,
MLP and RF, respectively which is very negligible resulting
in the possible testing of the models and reconfiguration of
resources, reactively.

To compare the models, we have used the error-based
evaluation metrics described in section Table [V] shows
the results of the error metrics along with the R-squared values
related to each resource predicted by the models. We found
that all three methods provide low error values as well as
relatively high R-squared values when we train them with the
dataset explored from the Elastic stack. For instance, according
to the SNORT, the R-Squared values for MIMO-GRNN are
0.91, 0.97, and 0.74 for vCPU, memory, and link capacity
respectively, while MLP gets 0.91, 0.96, and 0.74 and R-
Squared values of RF are 0.92, 0.98 and 0.76. Considering
only the R-Squared parameter is not sufficient in comparing
all investigated models to find the best model to fit our dataset,
we have provided various error metrics. As a result, RF
appears slightly better than MIMO-GRNN and MLP in terms
of accuracy and response time for the prediction of resource
configurations for both the SNORT and vFW VNFs. As an
example, while predicting the number of vCPU cores needed
for the SNORT VNEF, the MAPE, MAE and RMSE values for

TABLE V
ERROR-BASED EVALUATION METRICS IN PREDICTING THE ABSOLUTE CONFIGURATION OF RESOURCES

vnf MIMO-GRNN MLP RF
CPU | MEM | LC (Mbps) | CPU | MEM | LC (Mbps) | CPU | MEM | LC (Mbps)
SNORT | MAPE (%) | 3.21 0.18 5.25 3.83 0.85 5.25 3.16 0.19 4.80
MAE 0.02 0.10 25.60 0.02 0.56 26.10 0.02 0.08 23.33
RMSE 0.04 0.79 36.97 0.04 0.99 36.68 0.03 0.68 34.80
R-squared 0.91 0.97 0.74 0.91 0.96 0.74 0.92 0.98 0.76
vFW MAPE (%) | 4.84 0.67 2.96 5.41 1.91 4.29 391 0.92 2.63
MAE 0.03 0.48 14.76 0.03 1.17 21.41 0.02 0.61 12.90
RMSE 0.06 2.42 27.33 0.07 2.46 35.73 0.04 2.30 20.03
R-squared 0.68 0.95 0.81 0.55 0.95 0.65 0.83 0.96 0.90
TABLE IV TABLE VI

PARAMETERS OF THE MLP MODEL TO PREDICT THE ABSOLUTE
CONFIGURATION OF RESOURCES

Parameter SNORT vFW
Number of neurons in Input Layer 4 4
Number of neurons in Output Layer 3 3
Number of Hidden Layer 55 65
Number of neurons in each Hidden Layer 256 256
Activation Function in hidden layers selu selu
Activation Function in the output layer sigmoid sigmoid
Epoch 600 600
Batch size 16 16
Optimizer rmsprop rmsprop
Learning rate le-5 le-5

the RF are 3.16, 0.02, and 0.03, respectively. However, these
values are 3.83, 0.02, and 0.04 for the MLP model, and 3.21,
0.02 and 0.04 for the MIMO-GRNN.

2) Optimum MIR Recommendation: The second role
of models generated by Predictor Manager is to predict
accurately the Optimum MIR for resource configurations
in which the given KPIs can be met. In this experiment, there
are six input variables under the category of the resources
and KPIs and performance metrics to predict one output
variable. The input variables are number of vCPU cores,
Memory, Link Capacity, CPU utilisation, Memory utilisation,
and Latency, while the output variable is Optimum MIR.
Our investigation involves training and test datasets with a
ratio of 80:20. For MIMO-GRNN, in the case of SNORT,
we set the Smoothing factor parameter to 0.02 (¢ = 0.02),
whereas for RF, we set the number of trees to 600. Regarding
the VFW, we set 0 = 0.005 for MIMO-GRNN and the
number of trees to 1600 for RF. Table summarises our
MLP parameters. It is noted that after training the models,
predicting the Optimum MIR utilising the models generated
by the Predictor manager only takes around 59.20, 0.70, and
0.53 second for GRNN-MIMO, MLP, and RF, respectively.

Table summaries the error-based metrics and R-squared
values for predicting the Optimum MIR for both profiled
VNFs. For Snort VNF, the RF method yields the least error
values, even though the other methods provide approximately
similar R-squared values. For instance, according to the
SNORT, the MAPE, MAE, and RMSE values of RF are equal
to 6.55%, 20.50 Mbps, and 30.37 Mbps, respectively. For
MIMO-GRNN, on the other, MAPE, MAE, and RMSE are
equal to 6.67%, 21.99 Mbps and 32.42 Mbps, respectively.
Last, the aforementioned values for MLP are equal to 6.82%,

PARAMETERS OF THE MLP MODEL TO PREDICT THE
Optimum MIR

Parameter SNORT vFW
Number of neurons in Input Layer 6 6
Number of neurons in Output Layer 1 1
Number of Hidden Layer 3 3
Number of neurons in 1st Hidden Layer 1024 1024
Number of neurons in 2nd Hidden Layer 2048 4096
Number of neurons in 3rd Hidden Layer 4096 4096
Activation Function in hidden layers relu relu
Activation Function in the output layer sigmoid sigmoid
Epoch 600 600
Batch size 16 16
Optimizer Adam Adam
Learning rate le-4 le-5

TABLE VII
ERROR-BASED EVALUATION METRICS IN PREDICTING THE
Optimum MIR

SNORT vFW
MIMO- MIMO-
GRNN MLP RF GRNN MLP RF
MAPE (%) 6.82 6.67 6.55 4.15 1436 | 11.12
MAE (Mbps) 21.64 21.99 | 20.50 11.69 33.03 | 27.93
RMSE (Mbps) 31.73 32.42 | 30.37 36.46 46.34 | 38.86
R-squared 0.89 0.88 0.90 0.84 0.71 0.81

21.64 Mbps, 31.73 Mbps, respectively. Based on the results,
we can conclude that for predicting Optimum MIR, for
SNORT, RF performs better than the rest models (in terms of
the accuracy and response time), and for vEFW, MIMO-GRNN
acts better in terms of accuracy while RF has quite a similar
accuracy but with less response time.

F. The Accuracy of the Performance Prediction

We tested various combinations of resource configurations
with the targeted performance metrics and KPIs of 0.95 - 1.1
for CPU utilisation and 2.1 - 3.1 ms for latency. Noted that
both CPU utilisation and latency were filtered for SNORT,
and latency was filtered for vVFW. In this section, we aim
to compare the average Optimum MIR obtained from the
“VNF Performance Dataset” (referred to as “actual”) with the
predicted results done by the generated model (RF), referred
to as “predicted”. These tests are divided into 9 filters (F1 to
F9), as illustrated in Figure [8] and detailed in Table In
brief, the error rate between the “predicted” Optimum MIR

TABLE VIII

COMPARING THE OBTAINED Optimum M IR UTILISING THE WEIGHTED RESOURCE CONFIGURATION SELECTOR AND THE
PREDICTOR MANAGER THROUGH VARIOUS COMBINATIONS OF RESOURCES

. . Metrics
Filters Considered Resources & KPIs SNORT vFW
. . Actual Avg. | Predicted Actual Avg. | Predicted
vCPU cores LmkNﬁ)apaC“y Mi;"é"y < | _ | Opt.MIR | Opt. MIR Em’;Rate Opt. MIR | Opt. MIR E”";Ra‘e

(Mbps) MB) 1S [3| (Mbps) (Mbps) (%) (Mbps) (Mbps) (%)
FI 0.6 to 0.65 400 to 420 30070 | & | 2 354.0 353.60 0.1T 234.03 23241 0.69
F2 0.6 to 0.65 420 to 450 30t0o 70 | Q2 z 363.0 359.66 0.9 252.96 251.30 0.66
F3 0.6 to 0.65 450 to 480 30to 70 | ~ | .. 370.9 368.29 0.7 286 281.81 1.47
F4 0.65 to 0.68 480 to 500 30070 | g 384.4 386.80 0.6 318.04 32323 1.63
F5 0.68 to 1 500 to 520 30070 | 7 | 7 418.6 421.66 0.7 345 339.87 1.49
F6 0.5to0 0.6 500 to 660 30to 70 | 2 2 3429 359.15 4.7 358 360.67 0.75
F7 0.65 505 65 E £ 389.5 380.02 2.4 330 322.82 2.18
F8 0.65 505 66to80 | © | 391.4 380.02 29 325 315.02 3.07
F9 0.65 505 60 to 65 389.0 381.74 1.8 320.45 325.33 1.52

and the “actual” one in all filters is lower than 5%, which
indicates a highly accurate quality of prediction.

Our results show that both VNFs can handle a higher
amount of load (Optimum MIR) with increasing link ca-
pacity, hence the Optimum MIR (observed in filters F1 to
F3 in Figure [§] and table is directly proportional to the
link capacity. In addition, increasing the amount of vCPU and
link capacity simultaneously yields a higher Optimum MIR
(shown in filters F3 to F5) for both VNFs. It is noticeable
that reducing the amount of vCPU and increasing the amount
of Link capacity significantly decreases the Optimum MIR
in SNORT. In comparison, by doing so, the Optimum MIR
increases in VFW (indicated in filters F5 to F6). We can also
realize that in SNORT, the amount of vCPU has more impact
on the Optimum M IR than the link capacity comparing with
the vFW that the link capacity has a greater impact than CPU,
which is consistent with the computed weights of resources
(W) discussed in section Straightforwardly, varying the
allocated memory does not have a significant impact on the
performance metrics of both SNORT and vFW VNFs (see
filters F7 to F9).

G. Discussion and Interpretation

The value of performing VNF profiling and adopting
profile-based MANO techniques bring a series of advantages
when compared to conventional MANO. For example, in a
scenario where profiling of VNFs is not performed, the initial
deployment of an NS would be done by allocating an arbitrary
configuration of the computational and network resources
(e.g., by taking an educated guess of a human operator). When
this initial configuration is proven not to support the observed
demand, the NFVO will have to resort to equally arbitrary
policies in order to scale (horizontally or vertically) one or
both of the VNFs. Since there is no data-driven or analytical
model to guide this process, the time taken by the NFVO to
achieve stable configurations might be very long and require
multiple iterations before proper convergence. Meanwhile, the
quality of service can degrade and trigger undesired effects
such as SLA non-compliance and loss of clients. In a scenario
where profiling data is available, this convergence time is
expected to be very short (indeed, the more precise the model,
the quicker convergence should be), which in turn decreases
the risk of undesired effects.

Moreover, a service provider might use profiles to choose
between similar VNFs from different vendors in order to
compose a bigger chain (day I operation); the NFVO might
use profile data to decrease an initially overestimated resource
allocation from one VNF in order to prioritize another VNF
in the same chain without imposing the need for increasing
the overall resource allocation (day 2 operation); a service
provider might rethink its KPI acceptance criteria and tar-
get performance using the profile to estimate the impact
of changing them when looking for a way to reduce cost
(ad-hoc management decision); between other usages. These
examples also illustrate how employing profiles help to reduce
the dependency on human intervention, trial and error, and
bespoke configuration, which is a step forward in the direction
of ZSM.

In particular, the case studies presented, although comprised
by a single isolated VNF each, can be interpreted as if being
part of a hypothetical broader context, which allows us to
understand the value of using NAP. We can conceptualise an
example based on the 2 VNFs previously presented. Consider
a simple NS composed by chaining the vVFW and SNORT
VNFs in the given sequence, whose only purpose is to protect
a set of applications (that expose communication channels
via TCP/UDP) against illegitimate access. Because the avail-
able profiles clearly point out that the main bottleneck for
increasing the supported input rate is the network capacity
(the number of vCPUs and amount of memory is modest
when compared to commodity datacenter hardware, while the
virtual network interface and link capacities will be inversely
proportional to the amount of VNFs being hosted inside
the same hardware), the NFVO can perform an assertive
placement in infrastructural nodes with smaller computational
power or memory but good connectivity. Moreover, when fed
with the information about the maximum throughput of the
network interfaces in the VNFs (which can be given via the
software/hardware specification or by an additional profiling
experiment), the NFVO is capable of using the profile to
decide which service demand/input rate can not be served and
trigger an horizontal migration (and associated load-balancing
operation). This perspective is valuable to start to unveil
the usefulness of the proposed framework in the context of
NFV MANO. We have kept the further analysis of diverse
resource configurations and varied application and network

500 SNORT

F1 F2 F3 F4 F5 F6 F7-(Avg F8-(Avg F9-(Avg

Resources) CPU,Avg CPU,Avg
LC, Greater LC, Less

mmm Actual Optimum_MIR (Mbps) Mern) Wem)
em lem

==Predicted Optimum_MIR (Mbps) using RF

()

Fig. 8: Comparing Actual and Predicted Optimum M IR based on
include 95% confidence intervals.

layer functions out of the scope of this work and have left
them as a suggestion for future works in this field.

Finally, it is important to emphasize that for the majority
of cases, a service provider will be interested in minimising
allocation of CPU cores, memory utilisation and link capacity
(or throughput of the network connection), since those factors
directly influence operation costs, especially when third-party
cloud/edge infrastructure is examined. Therefore it is realistic
to assume that most of the profiles should include the related
monitoring metrics, similarly to the presented experiments.
Additional parameters might be considered depending on the
purpose of the NS or specificity of the application layer, e.g., a
service for transcoding and video streaming might also require
monitoring data about GPU usage and video quality (such as
delivered number of frames per second).

VI. CONCLUSION

We propose a Novel Autonomous Profiling method called
NAP that can be utilised within the broader context of Zero-
touch network & Service Management (ZSM) for the next
generation of NFV orchestration. Our NAP method integrates
three roles: First, a weighted resource configuration selection
algorithm, which automatically generates a profiling dataset
for the VNFs by selecting the configuration of resources with
the highest impact on the performance goals and KPI targets
in a limited profiling time. Second, NAP creates a model
to accurately predict the performance metrics for previously
untested resource configurations in which the given perfor-
mance goals can be met. Last, NAP utilises ML-based tech-
niques to estimate the absolute amount of resources required to
meet both the given performance goals and the performance
metrics in the target environments. The obtained results on
real datasets related to various type profiled VNFs show that
our NAP method can predict the untested configuration of
resources as well as the performance metrics with significant
accuracy. Thus, the model generated by the Predictor Manager,
accompanied by our proposed NAP method can be used for
the next generation of NFV Orchestration during the entire
life-cycle management of NSs.

Future work includes extending our current profiling work
to cover more resource types. This vision raises the state space
of profiling predictions exponentially. We also plan to extend
our autonomous profiling method to profile VNFs hosted at
edge and cloud environments covering cases such as network
slicing and mobility management.

400 VFW

F1 F2 3 F4 F5 6 F7-(Avg F8-(Avg F9-(Avg
Resources) CPU,Avg LC,CPU,Avg LC,
Greater Less Mem)

i Actual Optimum_MIR (Mbps) Mem)
lem

——Predicted Optimum_MIR (Mbps) using RF

(b)

various combinations of resources; (a) SNORT, (b) vFW. Results

ACKNOWLEDGMENT

This work has received funding from the UK: EP-
SRC projects INITIATE (EP/P003974/1) and TOUCAN
(EP/L020009/1) and from the EU: H2020 projects 5G-
VICTORI and MATILDA (grant agreements 857201, 761898).

REFERENCES
[1] ETSI, “Network transformation: (orchestration, network and
service ~ management framework),” https://www.etsi.org/images/

files/ETSIWhitePapers/ETSI_White_Paper_Network_Transformation_
2019_N32.pdf, Tech. Rep., Oct. 2019, Accessed: 29-05-2020.

[2] ——, “OpenSource MANO - OSM,” |https://osm.etsi.org/, Accessed: 01-
05-2020.

[3] Linux Foundation, “Open Network Automation Platform - ONAP,”
https://www.onap.org/, Accessed: 01-05-2020.

[4] A. Mestres et al., “A machine learning-based approach for virtual
network function modeling,” in 2018 IEEE Wireless Communications
and Networking Conference Workshops (WCNCW). 1EEE, 2018, pp.
237-242.

[5] Nfv workload efficiency whitepaper. [On-
line]. Available: https://t19000.org/resources/documents/
NFVWorkloadEfficiency Whitepaper.pdf

[6] M. Peuster and H. Karl, “Profile your chains, not functions: Automated
network service profiling in devops environments,” in 2017 I[EEE
Conference on Network Function Virtualization and Software Defined
Networks (NFV-SDN). 1EEE, 2017, pp. 1-6.

, “Understand your chains: Towards performance profile-based
network service management,” in 2016 Fifth European Workshop on
Software-Defined Networks (EWSDN). 1EEE, 2016, pp. 7-12.

[8] L. Cao et al., “Nfv-vital: A framework for characterizing the perfor-
mance of virtual network functions,” in 2015 IEEE Conference on
Network Function Virtualization and Software Defined Network (NFV-
SDN). IEEE, 2015, pp. 93-99.

[9] M. Peuster and H. Karl, “Understand your chains and keep your
deadlines: Introducing time-constrained profiling for nfv,” in 2018 14th
International Conference on Network and Service Management (CNSM).
IEEE, 2018, pp. 240-246.

[10] F.Beye et al., “Towards accurate and scalable performance prediction for
automated service design in nfv,” in 2019 16th IEEE Annual Consumer
Communications & Networking Conference (CCNC). 1EEE, 2019, pp.
1-7.

[11] A. Heideker et al., “Profiling service function chaining behavior for nfv
orchestration,” in 2018 IEEE Symposium on Computers and Communi-
cations (ISCC). IEEE, 2018, pp. 01 020-01 025.

[12] H. Mezaache et al., “Auto-encoder with neural networks for wind speed
forecasting,” in 2018 International Conference on Communications and
Electrical Engineering (ICCEE). 1EEE, 2018, pp. 1-5.

[13] V. Sciancalepore et al., “z-torch: An automated nfv orchestration and
monitoring solution,” IEEE Transactions on Network and Service Man-
agement, vol. 15, no. 4, pp. 1292-1306, 2018.

[14] S. Van Rossem et al., “Monitoring and debugging using an sdk for
nfv-powered telecom applications,” in /[EEE NFV-SDN2016, the IEEE
Conference on Network Function Virtualization and Software Defined
Networks, 2016, pp. 1-5.

, “Profile-based resource allocation for virtualized network func-

tions,” IEEE Transactions on Network and Service Management, vol. 16,

no. 4, pp. 1374-1388, 2019.

[7]

[15]

https://www.etsi.org/images/files/ETSIWhitePapers/ETSI_White_Paper_Network_Transformation_2019_N32.pdf
https://www.etsi.org/images/files/ETSIWhitePapers/ETSI_White_Paper_Network_Transformation_2019_N32.pdf
https://www.etsi.org/images/files/ETSIWhitePapers/ETSI_White_Paper_Network_Transformation_2019_N32.pdf
https://osm.etsi.org/
https://www.onap.org/
https://tl9000.org/resources/documents/NFV Workload Efficiency Whitepaper.pdf
https://tl9000.org/resources/documents/NFV Workload Efficiency Whitepaper.pdf

[16] D. Antanasijevi¢ et al., “Multiple-input-multiple-output general regres-
sion neural networks model for the simultaneous estimation of traffic-
related air pollutant emissions,” vol. 9, no. 2, pp. 388-397, 2018.

[17] J. G. Herrera and J. F. Botero, “Resource allocation in nfv: A comprehen-
sive survey,” IEEE Transactions on Network and Service Management,
vol. 13, no. 3, pp. 518-532, 2016.

K. Ogata, Modern Control Engineering, 5th ed., ser. Instrumentation and
controls series. Prentice Hall, 2010, ch. 2, pp. 17-22.

M. Bunyakitanon et al., “Auto-3p: An autonomous vnf performance pre-
diction & placement framework based on machine learning,” Computer
Networks, vol. 181, p. 107433, 2020.

M. Bunyakitanon, X. Vasilakos, R. Nejabati, and D. Simeonidou, “End-
to-End Performance-based Autonomous VNF Placement with adopted
Reinforcement Learning,” IEEE Transactions on Cognitive Communi-
cations and Networking, pp. 1-1, 2020.

Y.-C. Chang, “N-dimension golden section search: Its variants and
limitations,” in 2009 2nd International Conference on Biomedical En-
gineering and Informatics. 1EEE, 2009, pp. 1-6.

T. K. Ho, “Random decision forests,” in Proceedings of 3rd international
conference on document analysis and recognition, vol. 1. 1EEE, 1995,
pp. 278-282.

M. S. Hossain et al., “A comparative study of vibrational response based
impact force localization and quantification using radial basis function
network and multilayer perceptron,” Expert Systems with Applications,
vol. 85, pp. 87-98, 2017.

“Snort: SNORT software and documentation,” https://www.snort.org/,
Accessed: 07-04-2020.

“cAdvisor: Container Advisor,” https://github.com/google/cadvisor, Ac-
cessed: 07-04-2020.

“Elasticsearch, “Elastic stack”,” https://www.elastic.co/elasticsearch/,
Accessed: 07-04-2020.

[18]

[19]

[20]

[21]

[22]

(23]

[24]
[25]

[26]

Shadi Moazzeni is a Senior Research Associate
with the University of Bristol, Bristol, UK, where
she is a member of the Smart Internet Lab and the
High Performance Networks research group and the
cluster lead researcher of the EU Horizon 2020 5G-
VICTORI project. She received her M.Sc. degree
from Amirkabir University of Technology (Tehran
Polytechnic), Tehran, Iran in Computer Architecture
engineering in 2010 and her Ph.D. in Computer Ar-
chitecture engineering at the University of Isfahan,
Iran in 2018. She was also a Ph.D. visiting researcher
at the University of Bologna, Italy, from July 2016 to February 2017. Her
current research focuses on the performance and reliability of distributed
Software-Defined Networks, Network Function Virtualisation, multi-edge or-
chestration, monitoring and measuring Performance, and 5G network profiling
and orchestration.

Pratchaya Jaisudthi is a lecturer of the Rambhai
Barni Rajabhat University, Thailand, and a member
of the Smart Internet Lab, currently pursuing his
Ph.D. degree in Electrical and Electronic Engineer-
ing at the University of Bristol, United Kingdom.
His research focuses on ML solutions for Network
Function Virtualization. He received his Bachelor
and Master degrees in Electrical Engineering from
Chulalongkorn University, Thailand in 2006 and
2010 respectively with an emphasis on Telecommu-
nication.

Anderson Bravalheri received his Bachelor and
Master degrees in Electrical Engineering (Telecom-
munications and Telematics) from University of
Campinas (UNICAMP), Brazil in 2011 and 2016
respectively. From 2011 to 2017, he was a telecom-
munication researcher at CPqD working with a va-
riety of technical projects covering from control of
optical components and firmware development up
to SDN applications for optical networks. Currently,
he is a Senior Research Associate at the High
Performance Networks Research Group, University
of Bristol, UK, and his interests include Optical Communications, Fuzzy
Control, Distributed Systems, SDN, NFV and MANO systems

Navdeep Uniyal is a Senior Research Associate
at the High Performance Networks Research Group
and a member of Smart Internet Lab at the Univer-
sity of Bristol. Previously, he worked at NEC Labo-
ratories Europe, Germany in the Network Research
Division where he focused on Information Centric
Networks (ICN), NFV Orchestration and Network
Microservices. He completed his M.Sc. degree in
Distributed Software Systems from Technical Uni-
versity of Darmstadt, Germany in 2015. His research
interests lie in the areas of Cloud computing, NFV,
SDN, MANO and their applications towards 5G Networks.

Xenofon Vasilakos is a Lecturer at the University of
Bristol, the UK. His research is aligned with Bristol
Digital Futures Institute (BDFI) and Smart Internet
Lab (SIL). Currently, he is the lead researcher of
the Zero Downtime Edge Application Mobility (Ze-
roDEAM) project funded by Samsung Electronics
UK. He received the MSc degree in Parallel and Dis-
tributed Computer Systems from Vrije Universiteit
Amsterdam, and the PhD degree in informatics from
the Athens University of Economics and Business
with a focus on Information-Centric Networking
architectures, protocols, and distributed solutions. He has participated in
various EU and national funded research projects such as SGPPP SliceNet and
the FIA award-winning FP7 project PURSUIT. His current research interests
include 5G and 6G with a focus on Multi-access Edge Computing based
on cognition approaches inspired by machine learning models towards Zero-
touch network and Service Management. He is also involved in 5G/6G-related
research on the Internet of Things, Software-Defined Networking, Network
Function Virtualization, and network Slicing. Dr Vasilakos was a recipient of
an excellence fellowship grant from the French government (LABoratoires
d’EXcellence), and has received an accolade and awards for his academic
performance from the Greek State Scholarship Foundation.
CV: http://pages.cs.aueb.gr/ xvas/pdfs/detailedCV.pdf

Reza Nejabati is currently a full professor and
head of High Performance Network Group in the
Department of Electrical and Electronic Engineering
in University of Bristol. He has established success-
ful and internationally recognized research activities
in University of Bristol on “Software Defined Net-
v work”, “Network Virtualisation” and “Quantum Se-
/ cured Networking”. Under his leadership, these re-
y \ search activities have been transformational and have
/. ,lW . done major contributions in open, programmable
and quantum secured Telecom Infrastructure. His
research received the prestigious IEEE Charles Kao Award 2016. Building
on his research portfolio over the last 3 years, he co-founded a successful
start-up company (Zeetta Networks Ltd).

Dimitra Simeonidou is a Full Professor at the
University of Bristol, the Co-Director of the Bris-
tol Digital Futures Institute, and the Director of
the Smart Internet Lab. Her research is focusing
in the fields of high performance networks, pro-
grammable networks, wireless-optical convergence,
5G/B5G and smart city infrastructures. She is in-
creasingly working with Social Sciences on topics
of digital transformation for society and businesses.
Dimitra has been the Technical Architect and the
CTO of the smart city project Bristol Is Open. She
is currently leading the Bristol City/Region 5G urban pilots. She is the
author and co-author of over 500 publications, numerous patents and several
major contributions to standards. She has been co-founder of two spin-
out companies, the latest being the University of Bristol VC funded spin-
out Zeetta Networks, http://www.zeetta.com, delivering SDN solutions for
enterprise and emergency networks. Dimitra is a Fellow of the Royal Academy
of Engineering, a Fellow of the Institute of Electrical & Electronic Engineers,
and a Royal Society Wolfson Scholar.

https://www.snort.org/
https://github.com/google/cadvisor
https://www.elastic.co/elasticsearch/

	Introduction
	Related Works
	The Role of Profiling in NFV Orchestration
	Profiler Design
	Profiling Platform
	Profiling Workflow
	Method to Find Lg
	Predictor Models and Training
	MIMO-GRNN
	Random Forest
	Multi-Layer Perceptron

	Implementation, Data analysis and Evaluation
	Experimental setup
	Generating adequate VNF Performance Datasets
	Analysing VNF Performance Datasets
	Evaluation metrics
	Model Parameters Setup & Tuning
	Predicting the Absolute configuration of Resources
	Optimum MIR Recommendation

	The Accuracy of the Performance Prediction
	Discussion and Interpretation

	Conclusion
	References
	Biographies
	Shadi Moazzeni
	 Pratchaya Jaisudthi
	Anderson Bravalheri
	Navdeep Uniyal
	Xenofon Vasilakos
	Reza Nejabati
	Dimitra Simeonidou

