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Abstract—The complexity of envisioned 6G telecommunica-
tion networks requires an intrinsically intelligent architecture
designed to autonomously adapt to dynamics with end-to-end
zero-touch service automation operations. Motivated by this
vision, this paper tries to formulate concepts and solution
aspects towards designing a native Zero-touch 6G architecture.
Our discussion concentrates around three main pillars, i.e. (i)
introducing Machine Learning (ML) models in the core design of
the 6G architecture as native functions rather than add-on model
solutions; (ii) distributing 6G functionality to different compo-
nents up to the extreme edge; to (iii) leverage technology leaps
enabling, e.g., the use of multi-access technologies and peer-to-
peer communications besides the standard cellular connectivity
and other centralised functionality.

Index Terms—6G, Zero-touch network Service Management,
Closed-Control-Loop, Machine Learning

I. INTRODUCTION

The complexity of real-world communications requires
modern network architectures to autonomously adapt and
modify their behaviour at runtime to deal with demands of
high traffic volume, massive numbers of connected devices
with different service requirements, and improved quality of
user experience. It is expected, in the coming decade, more
than a billion connected devices, including vehicles, robots
and in addition to humans will generate zettabytes of data
and information. The 5GPPP report [1] suggests that Artificial
Intelligence (AI) and ML will play a central role in the 6G
ecosystem to exploit and process such amount of generated
data. The key features of 6G would include intelligence as a
central function to the control, management, programmability
and communication [1]. One important operational aspect of
the 6G vision is the end-to-end (E2E) system automation for
which it is necessary to have ML/AI as an integrated part of
the ecosystem [2], [3]. Additionally, the 6G is believed to be
rather far more agile and flexible compared to the existing
systems with intelligence distributed up-to edge of the future
networks [2].

In the context of agility and automation, Zero-touch network
and Service Management (ZSM) is expected to play a key
role. ZSM is defined by “self-*” features without traditional
administrator-like human intervention: self-configuration, self-
monitoring, self-healing, and self-optimisation. ZSM focuses
on self-management for service automation, i.e., increasing

efficiency by automating manual tasks such as those related
to network Management and Orchestration (MANO), service
workflows, and processes. The concept and fundamental ter-
minology were initially coined by ETSI’s homonymous ZSM
industry group specification in [4].

The ZSM architecture fostered by ETSI GS ZSM [4],
[5], intends to support fully automated network and service
management in multi-domain environments. However, we ar-
gue and discuss there is no clear framework or standard to
interconnect the different components required for ZSM at
runtime seamlessly. We discuss the existing works introducing
intelligence to the current 5G network architectures. Towards
having an E2E embedded intelligence within the control,
management and communication of the future 6G networks,
we argue there is a need to establish synergy between the
individual intelligent components. In essence, we discuss the
ongoing issues and provide a strategy and framework to
resolve those in this work. Driven by a vision of enabling
E2E zero-touch network service automation at runtime, we
propose a series of design objectives toward a framework
for introducing ZSM natively into future 6G architectures.
Specifically, this paper discusses the following:

• Enabling native 6G intelligence: The next generation
of network architectures requires a model for native
intelligence, which includes an orchestration framework
and support for continuous training and faster deployment
of the trained ML models via Transfer Learning (TL) [6]
between real (testbed-based) 6G deployments and simu-
lation environments.

• Distributing 6G functionality up to the extreme
edge:The SDN/NFV paradigm allows the distribution
of certain localised control, monitoring, and decision-
making capabilities from centralised RAN (radio access
networks) and MANO functions to the extreme edge,
such as smartphones or IoT devices.

• Exploiting technology leaps:The adoption of multi-
ple access technologies and peer-to-peer (P2P) commu-
nication between devices magnifies the benefits of a
distributed 6G operation by avoiding round trips and
optimising tasks offloading. It promotes better network
availability and performance by increasing fault tolerance



and reducing bandwidth utilisation.
The present paper focuses our efforts on enabling native

6G intelligence while briefly discussing the other two pillars
regarding multi-network integration and extreme-edge dis-
tributed control, as detailed above.

II. BACKGROUND

The ZSM vision for automation requires end-to-end archi-
tecture with tailored ML-based Closed-Control-Loop (CCL)
automation. This covers a major gap in the industry as well as
in relevant academic research by converging the fragmented
pieces into a single end-to-end service management design.
CCL is an important aspect of achieving the ZSM goals, and
some recent works have been proposed to enable CCL beyond
5G network architectures [7], [8]. As discussed in [7], ML is
a key enabler of CCL. However, the following challenges still
need to be addressed:

1) ML models generally require a large amount of data and
a long time to train. The roll-out of new/updated ML
models introduce some trade-offs to tackle in a CCL
environment. Specially, high-quality datasets are limited
to 5G scenarios [9]. Moreover, some existing ones are
restricted due to privacy concerns [10].

2) The constraints found due to limited computational re-
sources at the edge and extreme edge nodes make it
difficult to train and update the models online [3], [9].

3) Existing network architectures were not designed to
inherently support the ML components. It can result
in overloading of the infrastructure when deploying
resource-consuming ML solutions [3], [9].

There have been multiple efforts made to introduce intelligent
and optimised placement of Network Functions (NFs) [3],
[7], [10]. Some of the previous works have focused on
introducing intelligence to the edge of the network to facilitate
intelligent migration and scaling. However, intelligence is not
well integrated into architectures and usually corresponds to
ad-hoc efforts. In other words, in current architectures, the ML
models are generally trained and hosted separately to facilitate
network operations. The interoperability and deployment of
VNFs across cloud and edge compute nodes is another aspect
which needs intelligence to optimise the placement of NFs.
Authors in [11] have presented a modular solution to achieve
this. In 6G NFV architectures, we believe that such intelligent
solutions can be well integrated within the CCL. This paper
discusses the initial ideas towards addressing these challenges
for native ML-driven networks, which are likewise presented
in the following sections.

III. ARCHITECTURE ASPECTS

A. Framework for continuous ML deployments

In order to address the challenges listed in Section II, we
propose a close integration of the simulation environment
with the CCL enabled production environment for ZSM. As
shown in Figure 1 , the production environment consists of
CCL in each domain (namely access, transport, cloud and
edge/extreme edge as described in [7]).

Fig. 1. Envisioned ZSM CCL with an integrated simulation environment.

With this framework, we propose replicating the production
environment in the integrated simulator with configurations
similar to the production environment. This would tackle the
challenges from Section II by:

1) Large data generation (analogous to the production en-
vironment) using simulation and parallel training and
evaluation to reduce the rollout time.

2) Continuous synchronisation of monitoring data from the
production environment to enable efficient online training
and update to the future advanced ML models.

3) Providing an experimental platform to create and evaluate
new ML models utilising the high compute capacity.

Nevertheless, defining a proper stack for robust development,
testing, deployment, and operation of ML models for next
generation networks is not a trivial task. Different processes
must be considered, such as data pre-processing and sanitation,
model training, integration, and refinement.

We devise a Unified Environment Interface (UEI) to
achieve these complex communication patterns between ML
models and MANO services and processes for both simulation
and the production environment.

The UEI adopts existing toolkits and methodologies, e.g.,
OpenAI-Gym [12], as the foundation of a standard API
to leverage ML model integration, training, and refinement.
OpenAI-Gym offers a common interface between learning
agents (ML models) and managed tasks called environments.
It is discussed that it is easier to use and extend existing
frameworks like OpenAI-Gym as the ML research community
widely adopts it to benchmark and compare ML algorithms
rather than implementing a new standard. For instance, with
OpenAI-Gym, it is possible to interact with environments
exposing their observations, possible actions to be performed,
states, and rewards used in the context of Reinforcement
Learning (RL). The existing OpenAI-Gym interfaces are ex-
tended to train and deploy not only RL, but also other ML
models for next-generation networks as a first step towards
achieving the UEI. The previously mentioned claim will be
demonstrated in the following section (Section IV).



Fig. 2. Proposed framework for continuous ML deployment for ZSM using
the Unified Environment Interface

The ZSM reference architecture [5] describes two intercon-
nected domains: the managed infrastructure resources domain
and the management domain. The former refers to physical
resources (e.g., compute and network) and virtual resources
(e.g., VNFs, Network Service) deployed on the infrastructure.
Whereas the latter refers to management concerns such as
intelligent automation orchestration, control, and assurance
of resources. Figure 2 depicts the proposed framework. In
this proposed approach, the managed infrastructure resources
conform to the environments where actions and observations
occur. The environments can include simulations, emulations,
or real scenarios (e.g., testbeds). On the other hand, the man-
agement domain, which is part of the ZSM scope, corresponds
to the administration of the resources to provide domain-level
and cross-domain AI-inspired closed-loop automation.

The UEI is the bridge between the environments (i.e.,
managed resources) and the ML agents. In the case of sim-
ulations and emulations, observations, states, and actions are
exposed in the standardised format directly to the simulator
via UEI. Whereas, for the case of real-world scenarios (i.e.,
testbeds), this information can be exposed to the MANO via
UEI. The MANO has access to the possible actions that
can be performed in the managed resources and monitors
their states and observations. Lastly, the ML algorithms are
fed in a standard manner for their training and deployment.
Standardising these interactions makes it possible to generalise
and reuse ML approaches, monitor interactions for further
processing, and enable smooth interaction between physical
and virtual components.

One of the major challenges discussed in Section II is the
lack of data for training ML models. This makes it difficult
to speed up the rollout of updated ML models. With the
proposed framework, if the integrated simulator is designed
and configured as per the real environment, it could assist
in decreasing the rollout time for the updated/advanced ML
models. Such a framework would allow experimenters to

create a real-world scenario and test multiple situations to
generate data that could be used to train the ML models.
Furthermore, by providing predictions, the framework can
assist a MANO system in the placement of NFs along with
scaling and migration. Likewise, by leveraging the integrated
monitoring framework and having a holistic up-to-date view
of the environment, the framework could also optimise the
decision-making capability of the orchestrator.

B. Multi-access and Peer-to-Peer (P2P) communication

Along with the intelligent framework, the 6G architectures
could leverage the existing TCP/IP technologies like Muti-Path
TCP (MPTCP) to increase the overall bandwidth or robustness
of the network by utilising all the available network interfaces
in a User Equipment (UE). The extensions to MPTCP even
allow to optimise and select low latency paths among multiple
available options [13]. Edge deployments could benefit from
this integration by reducing overall latency by prioritising
the applications per the Service Level Agreement (SLA).
Additionally, in 6G, we envisage the higher acceptance and
integration of non-IP design concepts for protocols and NF
technologies, such as those consistent with the Information-
Centric Networks (ICN) architecture paradigm. ICN core
principles such as the E2E and across all layers adaptation
of publish-subscribe can enable the use of multi-access tech-
nologies to increase bandwidth and reduce latency [14] and
other advantages mentioned above. ICN also introduces the
in-network security aspects and seamless mobility based on
the request-response methodology providing more options for
the MANO and controller to achieve the desired performance.
The closed integration of intelligent ML systems would enable
an enhanced decision-making capability to select an optimum
network technology to enhance the user’s experience.

1) Using P2P communication between extreme edge devices
as ad-hoc networks to minimise latency: In P2P networks, the
nodes share their computation capacity along with the data
among themselves in a symmetric and bidirectional manner.
Similarly, mobile ad-hoc networks are generally self-managing
and self-configuring networks [15]. Mobile ad-hoc networks
are commonly short-lived and are created to serve a specific
purpose. We expect that for certain 6G use-cases, the control
shall be transferred to the network edge, including the extreme
edge such as smartphones or other mobile smart devices. The
underlying 6G network substrate enables nodes to build P2P
networking relations across all layers (from application/service
to physical layer connectivity). The applications like multi-
player interactive gaming, which require extremely low latency
and high bandwidth, could benefit from such a setup in
a highly mobile environment. Enabling such self-organising
pop-up networks would require the nodes to be P2P proto-
col aware. The integrated intelligent ML component could
support MANO to delegate the localised network control to
the edge/extreme edge nodes, which could set up the network
and take decisions on the migration of containers/applications
within the localised pop-up networks.



Fig. 3. MAE comparison using a custom simulation environment.

IV. IMPLEMENTATION AND PROOF OF CONCEPT
EXPERIMENTATION

As discussed in Section II, one of the significant challenges
for achieving integration of ML in ZSM is the lack of high-
quality datasets for the training. Additionally, the deployment
process can be disruptive. To address these challenges, we
proposed in our framework a seamless integration of simula-
tion environments and a next-generation testbed located at the
University of Bristol, using a well-defined AI framework as
UEI (i.e., OpenAI gym). The models trained in a simulator
can easily be deployed in the real testbed using the concept of
TL. TL could serve as an experimental playground for testing
advanced ML models considering various network scenarios
mimicking the real testbed. In this work, we have explored two
ways to achieve this: Firstly, by creating a custom simulator
with exact configurations as per the testbed, and secondly, by
using a more generic simulator with some configurations as
per the real testbed.

A. Custom simulator to support transfer learning

In our previous work [16], we developed a custom simulator
to mimic the 5G radio network based on the ETSI standards.
In addition, the simulator was configured according to the
real outdoor testbed (using location parameters and radio
configurations). Therefore, the simulator can generate random
paths based on the conditions (walking, driving, cycling, etc.).
In our experiment, we considered a user walking around the
testbed while playing an interactive game. The UE is handed
over from one radio access point to the other during this
process. The ML model aims to predict the handover, in other
words, to predict the likelihood of the mobile user being served
from a particular radio access point in the near future. For this
purpose, we trained the ML models to predict the Reference
Signal Received Power (RSRP) of the radio access points.

Additionally, the Physical Cell ID (PCI) of the radio access
point is decided using the predicted RSRP that would most
likely be the next serving cell for the user. As shown in Figure
3, the predictions were made for 2, 8, and 16 seconds in the
future. The radio monitoring data is continuously provided to
the trained ML model to make predictions.

Using TL, we trained the two ML models in our experiment:
eXtreme Gradient Boost (XGBoost) and Long Short-Term
Memory (LSTM) neural networks, using a custom simulator
and then deployed the trained ML models to predict the RSRP
and Cell PCI in the real testbed. We used three 5G radio
cells in the simulator, configured as per the real testbed, and
generated random trajectories in the defined space. Results,
updated from [16] in Figure 3 show that the difference be-
tween the Mean Absolute Error (MAE) observed in simulation
and testbed experiments is relatively small (∼0.5dB), hence
supporting our arguments for using a proper (in this case,
a custom) simulator that can serve as an ideal platform
to speed up the painful and time-consuming ML life-cycle
processes from model training to model deployment. Although
the custom simulator works well during TL, it is still not
in a closed loop with the production environment. Using
the framework proposed from Section III, we aim to fulfil
the gap by closely integrating the simulation and production
environments in a closed loop with the ML components using
the unified environment interfaces.

B. Community-standard simulation environment

To integrate the ML simulation environment with the real
testbed, a set of well-defined APIs is required. Towards this
regard, we tested the generalizability of our UEI approach,
using the well-known NS3 discrete-event network simulator
for Internet systems. NS3 is targeted primarily for research
and educational use. NS3-gym [17] is an open-source project
which interconnects OpenAI-Gym, with the NS3 network sim-
ulator using ZeroMQ (ZMQ). The framework allows seamless
integration of Python scripts with simulation and offers func-
tionality for synchronous and asynchronous communication,
as well as direct benchmarking of RL solutions. Other than
the feasibility of the seamless integration between ML system
and a network simulator, we want to show the potential of the
OpenAI-Gym interface beyond just the RL domain [17].

Figure 4 describes the proposed implementation. The envi-
ronment encompasses the NS3 simulation ambient. Using the
NS3-gym API and ZMQ, the communication between the En-
vironment Gateway and the Environment proxy is established.
This allows the simulation script, written in C++, to commu-
nicate during the simulation with the Python script where the
ML agents are implemented. The previous mentioned allows
the agent to interact with the environment through exposing
observations of the states and actions to be performed in the
simulation environment.

To test the feasibility of the approach, a similar experiment
to the one from Section IV-A was performed using NS3. In
this experiment, 2 supervised learning ML models were trained
and tested with a simulation in NS3 (i.e., the environment)
using the UEI. In contrast to the former experiment, we trained
the recurrent neural network LSTM to forecast RSRP and
Reference Signal Received Quality (RSRQ) of network cells
based on observations of the environment exposed by the
OpenAI-Gym API in the UEI. Then, the gradient boosting
model XGBoost was trained to predict the serving PCI of the



Fig. 4. NS3-OpenAI Gym interface

Fig. 5. NS-3 simulation: Cells and user distribution

user equipment at a certain point in the future, based on the
outcomes of the LSTM network.

The experiment consisted of 4 base stations scattered on
a plane representing a 5G microcell deployment. Figure 4
describes the scenario. Triangles represent base stations (cells),
and the red circle represents a user equipment (UE) that
changes its position dynamically to simulate user movements.
The NS3 environment was initialized, and observations were
collected from the simulation at each time step (0.5s) using a
synchronous protocol. The observations consisted of the RSRP
and RSRQ values of each cell, as a result of the implemented
OpenAI-Gym specific callback functions. The performance of
the LSTM model was evaluated by calculating the MAE of
the model’s predictions on the test set. The LSTM models
were trained for different forecast lengths 4-cell 5G network
scenarios.

Figure 6 (top) shows that small MAE values were achieved,
ranging from 1.23 to 1.89db, which shows high predictive

Fig. 6. MAE of the LSTM RSRP predictions (top) and XGBoost PCI
prediction accuracy (bottom) for various forecast times.

performance. Regarding the XGBoost model, Figure 6 (bot-
tom) shows that the model presented high accuracy scores
for predicting the future serving cell or serving cell physical
ID (S-PCI). The accuracy decreases as the forecast length
increases, which is due to the uncertainty introduced when
trying to predict points in the far future.

V. CONCLUSION AND FUTURE WORK

In this article, we have described our vision toward a
native Zero-touch 6G architecture design. Specifically, we have
discussed three cornerstones for achieving this: i) enabling
native 6G intelligence, ii) distributing 6G functionality up
to the extreme edge, iii) exploiting technology leaps. We
have focused our work on the first pillar towards introducing
ZSM natively into future 6G architectures. In that regard, we
have proposed a framework for continuous ML deployments
based on a closed control loop between the simulation and
production environment. The framework extends the ETSI
ZSM reference architecture by defining a Unified Environment
Interface (UEI) that acts as a bridge linking the managed
resources, called environments, and the ML models, called
agents, in the management domain. The proposed framework
would not only allow a seamless and native integration of
intelligence to the 6G networks, but also would expedite the
rollout of new and updated ML models.

We adopted a two-fold testing approach, according to which,
in the first experiment, we validated the TL using a custom



simulator to address challenges 1 and 2 listed in Section
II. Secondly, we used the proposed UEI framework through
OpenAI-Gym to address challenge 3 by tightly integrating the
ML and the simulation environments.

Future work will include research, development, and ex-
perimentation on the integration of UEI with the production
environment. The close loop integration between the ML
framework, simulation, and the production environments will
be developed and tested. As discussed in this paper, we
envisage the framework as an enabler for further research on
designing novel AI-optimised6G multi-network technologies
and extreme edge distributed control.
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