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Abstract—Ultra-reliable low-latency communication services
are intrinsically challenging to deliver, with many 5G and
future services, including mobile game streaming, adding further
complexity by demanding zero service downtime in high-mobility
scenarios. Solving these challenges is essential and must be
addressed beyond mobile gaming to realise a multitude of current
and future services like Virtual Reality or holoportation in
mobile scenarios. Multi-access Edge Computing brings services
“closer” to user consumption with evident advantages yet at
the cost of maintaining a zero downtime guarantee when user
handovers (HOs) are prevalent due to the decentralisation of
services towards the network edge. In this work, we design and
evaluate intelligent HO prediction models between radio 5G Base
Stations. The motivation for timely user HO prediction lies in
being a vital presupposition for path steering and other MANO
control actions in contemporary programmable 5G networks
to deliver a zero downtime perception during HO events. Our
meticulous simulation and actual testbed evaluation results show
that effective HO prediction can be achieved using a combina-
tion of Long Short-Term Memory (LSTM) or gradient boost
regression with classification models, with the latter filtering out
any Reference Signal Received Power (RSRP) prediction input
outliers for predicting the serving cell.

Index Terms—handover, mobility prediction, 5G network,
multi-access edge computing, machine learning

I. INTRODUCTION

Ultra-reliable Low-Latency Communication (URLLC) 5G
services pose significant challenges to the existing wireless
networks in terms of strict quality of service (QoS) require-
ments. Amongst these requirements, zero downtime poses as
one of the most severe and essential challenges that must be
addressed in 5G and beyond to enable seamless functioning of
URLLC services. At the same time, service delay susceptibil-
ity per se can be as extreme as in the order of a few dozen mil-
liseconds(ms), such as for mobile gaming or eX-tended/Virtual
Reality (XR/VR). This leads to considering multi-access edge
computing (MEC) service deployments [24], as the “closer”
a service is hosted to users, the lower the latency [18] as
well as the congestion likelihood [23] with fewer hops over
the data path between users and servers. Not only that, MEC
deployments favour machine learning (ML) models that are
envisioned to assist most modern URLLC services. This is
due to their intrinsic combined offering of extremely low
latency and data locality, hence overcoming any performance
or privacy/security considerations or restrictions.

Nevertheless, the benefits above come at a dual cost: as
identified in the zero downtime edge application mobility

research project1,2 over a mobile gaming use case, decen-
tralising services to MEC deployments and, particularly, to
hosts collocated with the Radio Access Network (RAN) sites,
demands (i) to maintain a zero downtime guarantee over
mobile handovers (HOs), while (ii) keeping users’ state always
in sync, i.e. within near-realtime delay margins. And all that
irrespective of the users’ mobility intensity and frequency.

As a result, the motivation for timely user HO prediction
is vital, for it is the cornerstone enabler of all necessary
processes prior to HOs to guarantee zero downtime. These
proactive actions include (i) Software-Defined Networking
(SDN) path steering and other control actions (e.g., increasing
link capacity over a 5G slice); and (ii) Network Function
Virtualisation (NFV) Management and Orchestration (MANO)
such as increasing/allocating edge computational resources
(e.g., GPU vCores) or fine-tuning user state synchronisation
between service points of presence (PoPs).

In our prior work of [24], we presented a proof-of-concept
mobile game streaming evaluation over an actual testbed setup
that involved a kubernetes-based Edge service and highlighted
the benefits of timely synchronising Edge service containers
rather than migrating or using checkpoint and restore (CRIU)3.
Specifically, we showed a two-order magnitude reduction of
service downtime induced by a HO, from 5487 ms to an
incredible 25 ms. Nonetheless, the former is an easy –even
insignificant– conclusion without timely HO predictions. To
cover this gap, the current work contributes a meticulous study
for the design and evaluation of intelligent HO prediction
models between radio 5G base stations (BSs) as a first step
and as a cornerstone of advanced orchestration decisions for
achieving a zero service downtime perception. In brief:
• Regression & classification techniques for mobility

prediction in 5G: We present regression and classification
techniques for serving cell prediction in a 5G radio network.
We design two ML models, namely (i) eXtreme Gradient
Boosting (XGBoost) [11] and (ii) Long Short-Term Memory
(LSTM) based Neural Network, and compare them against
a linear regression benchmark for predicting cellular RSRP
future values after 2 sec, 8 sec and 16 sec periods. XGBoost is

1www.bristol.ac.uk/engineering/research/smart/projects/zerodeam/
2research.samsung.com/news/SRUK-and-University-of-Bristol-s-Smart-

Internet-Lab-commence-5G-MEC-research-collaboration
3https://criu.org/Docker



proven to be a very efficient mobility prediction ML model
with an accuracy of 90% [15]. However, the performance of
LSTM is also proven in various automotive use-cases [14].
This work investigates the two models to predict user mobility
in a 5G network to support URLLC use-cases.

Also, we present a classification algorithm based on XG-
Boost, Extra Trees and Random Forest to predict the serving
BS based on the output of the RSRP prediction. Our results
show the error in regression is minimized by the classification
to predict the serving cell. Note that the aforementioned peri-
ods in the future span both the ultra-delay critical synchronisa-
tion requirements and the migration time needs between edge-
served Virtual Network Function (VNF) instances to support
zero service downtime perception for mobile handovers [24].
• Simulation-assisted Transfer Learning: We use a

purpose-built simulation environment designed to be compat-
ible with our outdoor testbed [9]. This enables us to apply the
transfer learning method [20] for developing-training-testing
our models within a faster life-cycle and through various scale
scenarios before moving, deploying and studying them to our
full-scale actual 5G testbed at Bristol. Alongside our prediction
models per se, transfer learning poses the cornerstone for
further researching SDN and NFV MANO actions before
HO events to enhance dynamic resource allocation and VNF
placement and/or chaining.
• 3GPP RSRP model-based evaluation: In radio networks,

RSRP plays a major role in deciding which cell would be
serving a connected user. The RSRP based HO decision is
based on a complex relationship described in section III.
We use 3GPP RSRP model-based values as training and
validation datasets and conduct a meticulous evaluation. Our
evaluation results show that effective HO prediction can be
achieved using a combination of either (i) LSTM or gradient
boost regression, and (ii) classification models, with the latter
filtering out any RSRP prediction outliers for predicting the
serving BS. While we have used the LSTM and gradient
boost regression techniques to predict the RSRP values of all
the potential serving cells, the classification techniques utilize
the predicted RSRP values to futher predict the radio cell
which would serve the user. The corresponding serving cell
probabilities can be fed to MANO to deliver a zero downtime
user perception during HO events.

For the rest of this paper, Sec. II discusses related work on
mobility prediction and intelligent approaches, followed by
the details of our simulation environment in Sec. III, and our
ML models in Sec. IV. Finally, we present our performance
evaluation in Sec. V before concluding with Sec. VI.

II. RELATED WORK

Mobility prediction is not a new concept. It has been used
previously to improve QoS support during HOs in cellular
networks since the early 2000s, e.g. in [13], [22], and even
before. Starting from LTE networks, multiple studies have
been performed to establish mechanisms for efficient HO of
users in a cellular network. More recently, with the advent of
5G networks, efforts have been increased to either establish a
better cellular HO mechanism or to predict the future HO to
support various QoS sensitive applications [3]–[5], [12], [19].

Some of the existing works rely on the use of ML mechanisms,
while a few attempts have been made to address the issue
without using ML methods and by utilising heuristics [3]
instead. Most of the work has been carried out while targeting
a specific scenario, or in some cases, a pattern such as a user
movement is known along with the cell locations to establish
an efficient HO mechanism.

In this work, we target MEC-enabled URLLC use cases
covering a wide range of related use case scenarios spanning
from high frame-per-second (fps) multiplayer game streaming
to remote desktop; augmented reality; industrial internet-of-
things (IIoT); autonomous driving; and XR/VR or holographic
services. Moreover, unlike other efforts, we do not study
tracking or predicting users’ exact mobility path, but stress
instead on the critical target of timely and accurate HO
prediction between serving BSs and, hence, the service HO
between the corresponding MEC service PoPs paired to BSs.
To support mobility in such a scenario, game players expect
to have a smooth HO from one BS to another without
any perceived downtime [24]. Keeping user privacy under
consideration, we assume, there is no user location data
available to the monitoring system while it only relies on the
radio signal information like RSRP. Additionally, we assume
unpredictable user walking mobility patterns in our 5G testbed
while interacting in small timescales with the streaming video
gaming service.

As with prior works [21], [25], the more recent work of [3]
relies on the predictable user pattern as the path is fixed (e.g.,
commute between home and office). The BSs and distances
are known to the HO prediction using historical data, making
it unsuitable for our case. Similarly, [5] and [4] uses the GPS
data to predict the direction of user movement, which is not
in line with the assumptions we made in this work.

Regarding works employing ML modelling solutions, the
work of [14] investigates user mobility prediction in auto-
motive scenarios with the use of LSTM recurrent neural
network configurations. The authors show that LSTM can
provide accurate mobility predictions leading to a balanced
use of distributed resources through service scale migration or
replication actions. The authors of [12] use channel state infor-
mation along with the user HO history to employ supervised
ML to predict the future HO. One drawback to this technique
is the reliability of user equipment to report back the channel
gain to the base station periodically, and hence the prediction
could be delayed or corrupted. Another neural network-based
work [19], states the effect of HO on various parameters
ranging from resource utilisation to the user experience. It also
uses the user location as an input to the problem and hence
differs from the current work’s assumptions.

III. DATA GENERATION AND SIMULATION

The developed simulation environment consists of an ag-
gregation of mathematical models representing the overall
system behaviour and uses fixed-increment time progression.
The primary purpose of this simulator is, given a specific
BS arrangement covering a L × L square area, to generate
a sequence of RSRP values, a description of which physical
cell identifier (PCI) the user’s equipment (UE) is connected



to at each step, and a sequence of time values related to HO
intervals.

Fig. 1: Example of generated trajectories inside a 1.13× 1.13 km2 area.

The trajectory generation assumes an urban scenario where
users move alongside roads or paths forming lines and perform
angular turns. This behaviour, illustrated in Fig. 1, is obtained
by splitting the trajectory in a set of N segments with a variable
number of steps. Each segment is generated by randomly
selecting a target point inside the L×L square according to a
uniform probability. The UE then moves in the direction of the
target for a certain number of steps (given by the segment’s
length); however, noise with normal distribution is added to the
displacement direction to account for non-rectilinear motion.
The duration of each step is determined by the configured
velocity of the displacement (which is assumed constant). The
RSRP computation uses the generated trajectory to calculate
the distance (d3D) between the macrocell and the UE at each
point, which in turn is used to obtain the path loss (PL) for a
given carrier frequency (fc) based on the urban macro model
defined [1] in Eq. (1). For simplicity, the UE is positioned
1.5 m off the ground. The path loss values are then used
to derive RSRP according to Eq. (2), where PTX represents
the transmitted power of the BS, G represents the antenna
gain, and N (0, σ2

shadow) is a random variable accounting for
shadow fading, chosen according to a normal distribution with
0 mean and σ2

shadow variance. Eq. (3) considers φ3dB = 65°,
a maximum attenuation value Amax = 30 dB and the angle
between user terminal and the cell orientation (φ′′). Since the
computed values are very noisy, two stage filtering is applied:
the first stage uses a rolling average for the last 40 samples
of RSRPs and the second stage uses the layer 3 filtering
technique [2] with filtering coefficient 4.

PL = 13.54 + 39.08 log10(d3D) + 20 log10(fc) (1)
RSRP = PTX +G− PL−N (0, σ2

shadow) (2)
G = min{12(φ′′/φ3dB)2, Amax} (3)

Finally, the HO decision and choice of S-PCI at each step
follows the timer-based A3 algorithm described in 3GPP
document [2]. According to A3, the UE enters a pre-condition
for HO when the value of the RSRP for a neighbour BS is
larger than the value of the RSRP for the currently connected
BS (except for pre-configured values of offset and hysteresis).
If the UE satisfies this pre-condition for a sufficient amount
of time, then the HO is triggered. In our implementation, the
offset values are assumed 0 dB, hysteresis is configured to 3
dB, and the time to trigger is set to 1024 ms. The initial BS
cell is chosen according to the highest RSRP value.

IV. HANDOVER PREDICTION MODELS

To support URLLC user mobility, we must predict future
user HO between BSs. The objective is to know the proba-
bility of the user getting served by a macrocell via accurate
prediction of the serving PCI (S-PCI). The most crucial factor

in determining user connection to a particular BS is the signal
strength determined by the RSRP values. As shown in Fig. 2,
we have divided the problem into two parts: First, to predict
the RSRP value of each cell (with a potential to serve the
user) and then to use the predicted RSRP values to predict the
S-PCI. The former is a time-series regression problem, while
the latter is a classification problem. The output of the whole
system is deemed to be a matrix expressing the probability of
the user being served by a PCI. This method makes the system
dynamic and flexible to add multiple BSs in the prediction.
In our experiments, we have implemented two different ML
models and one benchmark heuristic algorithm to compare the
RSRP predictions while using a multi-classification method to
get the S-PCI probabilities.
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Fig. 2: Handover prediction methodology

A. RSRP prediction

RSRP values follow a change pattern after user movement
by increasing with a decrease in distance between the user and
the cell as per Eq. (1) and (2). However, it is recommended to
avoid direct access to user’s location parameters due to privacy
concerns, implying an additional challenge. As an alternative,
we have implemented instead the following prediction tech-
niques based on short-term history of RSRP values and S-PCI:
• Ensemble and eXtreme Gradient Boosting: Accurate

predictions are achieved by training a single robust ML model
over multiple iterations. An ML algorithm’s objective can also
be achieved if multiple ML models work together to find
an optimum. Such a technique to sequentially build a robust
predictive model is called ensemble learning [17]. Boosting is
an ensemble method where multiple weak models (or learners)
are combined to create a single robust model to improve
the overall prediction accuracy. Gradient boosting aims to
minimize the loss function by adding various weak learners
using gradient descent over multiple iterations to find the
direction where the loss decreases fastest. As shown in eq. 4,
each weak learner is fit upon the derivative of the loss in the
previous iteration with η being the learning rate. If η is large,
the minima will be overrun easily, and a smaller η would lead
to longer training time.

Fn = F(n−1) + η ∗
(
−

∂L

F(n−1)

)
(4)

XGBoost is a highly efficient and one of the most recent
tree boosting algorithms. As shown in eq. 4, it uses gradient
descent to minimize the objective function with combined loss
and regularization [11]:

Lt =

n∑
(i=1)

l (yi, f (x+ ∆x)) + Ω (ft) (5)

XGBoost is a function of functions with l in eq. 5 is a cart of
decision trees. It uses a greedy algorithm to minimize the loss



function L over time t and the regularization parameters Ω
prevents overfitting of data. Additionally, the parallel process-
ing of loss minimization makes it faster than most gradient
boosting algorithms.
• Long Short-Term Memory: LSTM is a special kind of

recurring Artificial Neural Network (ANN) that uses memory
to store previous computations and an advanced four-stage
design that learns about the contributions of these stored values
to the final output.

This ability makes LSTM particularly suitable for process-
ing time series and forecasts and is achieved via a “gate”
mechanism. The purpose of each gate is to calculate a score
between 0 and 1 based on the current and previous inputs.
These scores are then used to modulate the values being either
added to or retrieved from the cell memory. The four stages
in LSTM are: forget gate, input gate, candidate memory, and
output gate.

A new value is generated based in a combination of current
and previous input by the candidate memory. This candidate
is meant to be added to the previous value store in memory,
however its final contribution is regulated by the input gate.
Similarly the contribution of the previous stored value is mod-
ulated bye the input gate. Finally, the output gate determines
how much of the value stored in memory will be used as
output of the LSTM cell.

Since each gate is dynamically activated by the current
and past inputs, LSTM can learn how to discard less relevant
information and focus on the important values. This is done
by optimising the weights and biases used in the linear
combinations of current and past values of input used to
calculate the gate scores and the candidate.
• Linear Regression: A simple linear regression can also be

used to estimate future RSRP values based on the assumption
that the prediction interval is small enough so that the users do
not change the overall behaviour of their movement. This tech-
nique consists of fitting the last N acquired RSRP values as a
linear function of the sampling time – RSRP (t) = at+b – and
extrapolate the results using the obtained angular coefficient
(a) and the intercept value (b). Predictions using extrapolation
via linear regression are easily computed and do not require
training. Nevertheless, they are constrained and generally only
applicable for a short prediction time interval.

B. Serving cell prediction
As shown in Fig. 2, the output of regression is given

to the classification module to predict the S-PCI accurately.
Our model uses a multi-classifier voting technique including
XGBoost, random forest and extra trees ML models. The
classifier’s objective is to predict the current serving BS
accurately while minimizing the previous step’s prediction
error (i.e. RSRP prediction). The training data is provided
to all the algorithms, and a voting classifier [10] with “soft-
voting” is used to determine the best classification model. The
probabilities denote the likelihood of a user being served by
a particular BS across each cell, and soft voting predicts the
class label based on the argmax of the sums of the predicted
probabilities. For N base classifiers bi, we assume f ji (xn)
is the output of ith classifier for input xn of class jth. Soft

voting uses a weighted approach with a better classifier is
given greater weight.

F (xn) = ωT fj (xn) (6)

where, fj (xn) =
(
fj1 (xn) , ...., fjN (xn)

)
(7)

T is the transpose of a matrix and ω represents the weight
matrix. Voting is based on the maximum weight among the
competing classifiers. The selected classifier is used to predict
the probability of a user being connected to a specific S-PCI.

V. PERFORMANCE EVALUATION

To evaluate the objectives listed in section I, we performed
a three-step evaluation by: (i) simulating mobility predictions
using two macro-cells matching our actual testbed experimen-
tal setup; (ii) transferring and validating the trained models
to our testbed, hence performing “simulation-assisted transfer
learning¨; (ii) conducting a scalability study by increasing the
number of cells from two to four. Finally, we show the results
of the classification to predict the S-PCI.

A. Simulation & Experimentation setups

The simulation tool discussed in Sec. III was used to
generate data corresponding to 300 random trajectories over
a varying time duration between 2000 and 3500 seconds.
From each trajectory a dataset was derived including the
RSRP values of all BSs and the S-PCI (corresponding to
the connected serving cell). We use 200 datasets for training
and 100 for validation. Two scenarios were considered: two
macrocells and four macrocells. Experiments where carried
out at Bristol’s millennium square, which is an open public
space testbed covered by two 5G macro-cells, one facing
167°east configured with a transmitting power of 28 dBm and
the other facing -86°west configured with 35 dBm. Volunteers
were asked to carry 5G-enabled devices running a monitoring
app and perform random trajectories lasting between 15 and
30 minutes each. Fig. 3 shows the testbed’s BS arrangement
and some of the recorded trajectories. For each trajectory,
a dataset was created based on the logs generated by the
monitoring app. Additionally, 10 extra datasets were created
for adjusting the models during the transfer-learning process,
by inputing the GPS coordinates of experimental trajectories
into the simulation environment.

Random user path(s)

Orientation of Radio cell(s)

Fig. 3: 5GUK Testbed site at Bristol Millennium Square. Notice the
annotated random user paths and the two differently coloured dashed lines
denoting the orientation of each of the two cellular radio heads used during
our RSRP validation experiments.



B. Performance analysis

We evaluate our ML models against a benchmark in three
future period scenarios according to the conclusions of our past
work in [24] to predict RSRP values and S-PCI: (i) 2 seconds
for near-future (immediate) predictions targeting fine-tuning
state synchronisation between service containers across the
current and future service MEC site; (ii) 8 and (iii) 16 seconds
in the future, hence capturing the time duration distribution for
migrating a service container (i.e., spawning a new instance,
and check-pointing & restoring state) to another service MEC
point. For RSRP predictions (Fig. 4), the training data is
varying over time; hence results are presented as three series at
reference times t+2, t+8 and t+16 corresponding to scenarios
(i), (ii) and (iii) above. Regarding S-PCI classification (see in
Fig. 5), we use training data in its original form, i.e. containing
the RSRP values of each BS and one S-PCI to denote the
serving cell. Input for training and prediction of RSRP consists
of past 100 values, i.e. t-100 monitored RSRP data. Based
on the input RSRP dataset, the goal is to predict the future
values. To conduct user mobility prediction, we predict the
S-PCI based on predicted RSRP values from ML models (see
Sec. IV-A) passed to the classifier.

1) RSRP predictions: In order to achieve zero-perceived
downtime with latency-sensitive applications during the HO,
the network orchestrator must get accurate HO predictions
within a stipulated time to take necessary actions (e.g., quick
synchronisation between service replicas or even whole VNF
migration) [24]. Fig. 4 presents both a simulation and an
experimental-based evaluation of RSRP predictions. All results
refer to mean values along with 95% confidence intervals.
Testbed experimental results refer to 10x validation repeats,
while simulation results to 100x repeats.

Transfer Learning validation & superiority over Lin:
Graphs (a) and (b) present a comparison between experimental
and simulation-based results on two cell environments, where
the simulation setup is designed to match our actual testbed.
The first conclusion drawn from (a) and (b) is that testbed
experiments validate our simulation evaluation. When transfer-
ring the simulation-trained models to the testbed, performance
differences are not significant and sometimes practically non-
existent (see XGBoost for t+16). In any case, the performance
differences and trends are consistent. This validates and en-
ables us to exploit the advantages of transfer learning from our
purpose-built simulation environment to realist deployment.

Graphs (a) and (b) complement each other; (b) presents
the mean absolute error (MAE) between predicted and actual
RSRP, while (a) shows the “coefficient of determination”
(R2) values expressing the percentage variation of model
predictions against actual RSRP. It is defined as R2 = 1–RSS

TSS ,
where RSS is the sum of squares of residuals (i.e., model
predictions) and TSS is the total sum of squares of the actual
RSRP measurements minus their mean. R2 values closer to
0 denote that a model fails to produce RSPR predictions
matching the actual ones, while values closer to 1 denote
good-quality predictions. Overall, both (a) and (b) denote that
our ML models exceed Lin by far in terms of R2 and MAE,
and for all periods, with Lin MAE values spanning larger

than the ML models from approx. 82% for t + 2 to approx.
51% for t + 16. Also, confidence intervals denote that the
ML models have a more robust performance. LSTM achieves
overall the best performance for all three future periods t+ 2
(need for immediate actions), t+ 8 (mid-term actions), t+ 16
(longer-term actions like state migration). In fact, LSTM and
XGBoost achieve near-optimal predictions for t + 2 in both
simulation and experimental runs, according to (b). However,
LSTM has generally more robustness regarding predictions
further in time. Nevertheless, we stress that the experimental
results for both ML models for t + 16 perform nearly close,
with their confidence intervals largely overlapping, unlike
simulation multiple ruins that show a -33.7% decrease in MAE
terms for LSTM compared to XGBoost.

Scalability and Robustness evaluation: Graph (c), on
the other, evaluates the ability of all models to scale with
the number of cells. Whereas the performance superiority
of LSTM and XGBoost remains, we notice that increasing
the number of cells reduces entropy, hence benefiting the
prediction ability for all models (even including Lin) due to
the richer RSRP input from four sources rather than just two.

Moreover, all graphs in the figure indicate that the per-
formance of our models remains robust when increasing the
future period prediction, as confidence intervals for R2 slightly
increase in (a) yet remain small regarding MAE in (b) and
(c). Unlike that, Lin’s MAE confidence intervals are generally
much higher for all periods in (b).

2) S-PCI prediction on predicted RSRP: Regardless of the
anticipated impact on S-PCI prediction, the above results of
Sec. V-B1 pose significant merits of LSTM and XGBoost,
which can be exploited for dynamic resource allocation and
the placement or chaining of VNFs as analysed in a multitude
of recent works on the field, such as [6]–[9], [16], [24].
Therefore, we focus next our S-PCI classification evaluation
on XGBoost and LSTM.

To evaluate the classification results we use F1 Score, which
is a denoted by the formula 8 based on true positives (TP), false
positives (FP) and false negatives (FN) and varies between 0
and 1. It expresses the ability of a model to balance both
between capturing an S-PCI and being accurate when it does
capture it.

F1 Score =
TP

TP + 1
2

(FP + FN)
(8)

We used the same dataset as with RSRP prediction to train
and validate the S-PCI classifier. The predicted RSRP values
from the two ML models are given to the trained classification
model to predict the S-PCI and compared against the actual
values to get F1-score. Fig. 5 compares the classification
results on metrics listed in Sec. IV-B. The overall performance
of S-PCI prediction using predicted RSRP values by LSTM
outperforms the ones by XGBoost. Across the three scenarios
(t+2,8,16), the F1-Scores of 2 and 4 cells are very close and
within the range of their confidence intervals. However, in the
nearest future, t+2 S-PCI predictions are ∼ 3% better than
t+8, which decreases to ∼ 2% further at t+16. The F1-Score
shows the model’s overall ability to predict the S-PCI correctly
with classification on all LSTM predictions ranging between
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∼ 92 and ∼ 95% across the three scenarios. In general, the
classification on LSTM predictions performs slightly better
than XGBoost, indicating that the small errors observed during
RSRP prediction are filtered out at this step.
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Fig. 5: F1-score on S-PCI classification on predicted RSRP values

VI. CONCLUSION AND FUTURE WORK

We present LSTM and XGBoost models for RSRP predic-
tion and S-PCI classification, proving that they can achieve
high and trustworthy accuracy levels regarding HOs. The
exhibited performance levels for predicting the correct serving
BS denote that such an intelligent HO prediction scheme can
support URLLC applications to achieve zero downtime during
mobile HO. We designed a purpose-built simulation envi-
ronment matching the University of Bristol’s 5GUK testbed
facilities and prove it can be used for simulation-assisted
transfer learning, posing the cornerstone for future work on
SDN and MANO proactive actions for enhancing dynamic
resource allocation, VNF placement or chaining. Additionally,
we would like to work with the derived data and further
combinations of regression and classification techniques to
predict the user mobility and HO.
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