73 research outputs found

    Pion emission from the T2K replica target: method, results and application

    Get PDF
    The T2K long-baseline neutrino oscillation experiment in Japan needs precise predictions of the initial neutrino flux. The highest precision can be reached based on detailed measurements of hadron emission from the same target as used by T2K exposed to a proton beam of the same kinetic energy of 30 GeV. The corresponding data were recorded in 2007-2010 by the NA61/SHINE experiment at the CERN SPS using a replica of the T2K graphite target. In this paper details of the experiment, data taking, data analysis method and results from the 2007 pilot run are presented. Furthermore, the application of the NA61/SHINE measurements to the predictions of the T2K initial neutrino flux is described and discussed.Comment: updated version as published by NIM

    Multiplicity and transverse momentum fluctuations in inelastic proton-proton interactions at the CERN Super Proton Synchrotron

    Get PDF
    Measurements of multiplicity and transverse momentum fluctuations of charged particles were performed in inelastic p+p interactions at 20, 31, 40, 80 and 158 GeV/c beam momentum. Results for the scaled variance of the multiplicity distribution and for three strongly intensive measures of multiplicity and transverse momentum fluctuations \$\Delta[P_{T},N]\$, \$\Sigma[P_{T},N]\$ and \$\Phi_{p_T}\$ are presented. For the first time the results on fluctuations are fully corrected for experimental biases. The results on multiplicity and transverse momentum fluctuations significantly deviate from expectations for the independent particle production. They also depend on charges of selected hadrons. The string-resonance Monte Carlo models EPOS and UrQMD do not describe the data. The scaled variance of multiplicity fluctuations is significantly higher in inelastic p+p interactions than in central Pb+Pb collisions measured by NA49 at the same energy per nucleon. This is in qualitative disagreement with the predictions of the Wounded Nucleon Model. Within the statistical framework the enhanced multiplicity fluctuations in inelastic p+p interactions can be interpreted as due to event-by-event fluctuations of the fireball energy and/or volume.Comment: 18 pages, 12 figure

    Measurement of Production Properties of Positively Charged Kaons in Proton-Carbon Interactions at 31 GeV/c

    Get PDF
    Spectra of positively charged kaons in p+C interactions at 31 GeV/c were measured with the NA61/SHINE spectrometer at the CERN SPS. The analysis is based on the full set of data collected in 2007 with a graphite target with a thickness of 4% of a nuclear interaction length. Interaction cross sections and charged pion spectra were already measured using the same set of data. These new measurements in combination with the published ones are required to improve predictions of the neutrino flux for the T2K long baseline neutrino oscillation experiment in Japan. In particular, the knowledge of kaon production is crucial for precisely predicting the intrinsic electron neutrino component and the high energy tail of the T2K beam. The results are presented as a function of laboratory momentum in 2 intervals of the laboratory polar angle covering the range from 20 up to 240 mrad. The kaon spectra are compared with predictions of several hadron production models. Using the published pion results and the new kaon data, the K+/\pi+ ratios are computed.Comment: 10 pages, 11 figure

    NA61/SHINE facility at the CERN SPS: beams and detector system

    Get PDF
    NA61/SHINE (SPS Heavy Ion and Neutrino Experiment) is a multi-purpose experimental facility to study hadron production in hadron-proton, hadron-nucleus and nucleus-nucleus collisions at the CERN Super Proton Synchrotron. It recorded the first physics data with hadron beams in 2009 and with ion beams (secondary 7Be beams) in 2011. NA61/SHINE has greatly profited from the long development of the CERN proton and ion sources and the accelerator chain as well as the H2 beamline of the CERN North Area. The latter has recently been modified to also serve as a fragment separator as needed to produce the Be beams for NA61/SHINE. Numerous components of the NA61/SHINE set-up were inherited from its predecessors, in particular, the last one, the NA49 experiment. Important new detectors and upgrades of the legacy equipment were introduced by the NA61/SHINE Collaboration. This paper describes the state of the NA61/SHINE facility - the beams and the detector system - before the CERN Long Shutdown I, which started in March 2013

    Report from the NA61/SHINE experiment at the CERN SPS

    Get PDF
    The physics program of the NA61/SHINE (SHINE = SPS Heavy Ion and Neutrino Experiment) experiment at the CERN SPS consists of three subjects. In the first stage of data taking (2007-2008) the measurements of hadron production in hadron-nucleus interactions needed for neutrino (T2K) and cosmic-ray (Pierre Auger and KASCADE) experiments will be performed. In the second stage (2008-2010) hadron production in proton-proton and proton-nucleus interactions needed as a reference data for better understanding of nucleus-nucleus reactions will be studied. In the third stage (2010-2012) hadron production will be measured in nucleus-nucleus collisions, with the aim to identify the properties of the onset of deconfinement and find evidence for the critical point of strongly interacting matter. The experiment was approved at CERN in June 2007. The first pilot run was performed during October 2007. We report here first results from this run

    Revised data taking schedule with ion beams

    Get PDF
    This document presents the revised data taking schedule of NA61 with ion beams. The revision takes into account limitations due to the new LHC schedule as well as final results concerning the physics performance with secondary ion beams. It is proposed to take data with primary Ar and Xe beams in 2012 and 2014, respectively, and to test and use for physics a secondary B beam from primary Pb beam fragmentation in 2010, 2011 and 2013

    Energy dependence of identified hadron spectra and event-by-event fluctuations in p+p interactions from NA61/SHINE at the CERN SPS

    Get PDF

    Search for the critical point by the NA61/SHINE experiment

    Get PDF
    NA61/SHINE is a fixed target experiment operating at CERN SPS. Its main goals are to search for the critical point of stronglyinteractingmatterandtostudytheonsetofdeconfinement. Forthesegoalsascanofthetwodimensionalphase diagram (T-μB) is being performed at the SPS by measurements of hadron production in proton-proton, proton-nucleus and nucleus-nucleus interactions as a function of collision energy. In this paper the status of the search for the critical point of strongly interacting matter by the NA61/SHINE Collaboration is presented including recent results on proton intermittency, strongly intensive fluctuation observables of multiplicity and transverse momentum fluctuations. These measurements are expected to be sensitive to the correlation length and, therefore, have the ability to reveal the existence of the critical point via possible non-monotonic behavior. The new NA61/SHINE results are compared to the model predictions

    NA61/SHINE measurements of anisotropic flow relative to the spectator plane in Pb+Pb collisions at 30A GeV/c

    Get PDF
    We present an analysis of the anisotropic flow harmonics in Pb+Pb collisions at beam momenta of 30A GeV/c collected by the NA61/SHINE experiment in the year 2016. Directed and elliptic flow coefficients are measured relative to the spectator plane estimated with the Projectile Spectators Detector (PSD). The flow coefficients are reported as a function of transverse momentum in different classes of collision centrality. The results are compared with a new analysis of the NA49 data for Pb+Pb collisions at 40A GeV using forward calorimeters (VCal and RCal) for event plane estimation
    corecore