233 research outputs found

    Treating Depression Mindfully in a Day Hospital:a Randomised Controlled Pilot Study

    Get PDF
    Objectives: Recent preliminary evidence suggests that mindfulness-based programmes may be beneficial in the treatment of patients suffering from current depression. Due to the heterogeneity of patients with this diagnosis, a specialisation in treatment concepts for subgroups of patients may be beneficial. Methods: This randomised controlled pilot study investigated the effectiveness of an eight-week mindfulness-based day hospital treatment for patients with current depression and work-related conflicts (MDT-DH) under naturalistic conditions. Eighty-one currently depressed patients with work-related conflicts were randomly assigned to either MDT-DH (including personalised psychopharmacological treatment if necessary) or a waitlist condition including a psychopharmacological consultation (PCC). Outcomes were assessed at post-treatment and at 8-month follow-up. The primary outcome was depression severity (Beck Depression Inventory) at post-treatment. Secondary outcomes were work ability (Work Ability Index) and mindfulness (Kentucky Inventory of Mindfulness Skills). Results: A multilevel analysis revealed that compared with patients in PCC, patients in the MDT-DH group showed a greater reduction in depression severity, higher work ability and heightened levels of mindfulness after 8 weeks than patients in the PCC group. These improvements were stable during the 8-month follow-up period. Conclusions: Findings of the present pilot study suggest that a treatment concept involving intensive training in mindfulness can be successfully established in a day hospital and leads to clinically meaningful reductions in depression severity and increases in work ability in patients suffering from current depression. The generalisability of the findings may be limited due to small sample size, selective patient group and study design

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file

    All-sky search for time-integrated neutrino emission from astrophysical sources with 7 years of IceCube data

    Get PDF
    Since the recent detection of an astrophysical flux of high energy neutrinos, the question of its origin has not yet fully been answered. Much of what is known about this flux comes from a small event sample of high neutrino purity, good energy resolution, but large angular uncertainties. In searches for point-like sources, on the other hand, the best performance is given by using large statistics and good angular reconstructions. Track-like muon events produced in neutrino interactions satisfy these requirements. We present here the results of searches for point-like sources with neutrinos using data acquired by the IceCube detector over seven years from 2008--2015. The discovery potential of the analysis in the northern sky is now significantly below Eν2dϕ/dEν=1012TeVcm2s1E_\nu^2d\phi/dE_\nu=10^{-12}\:\mathrm{TeV\,cm^{-2}\,s^{-1}}, on average 38%38\% lower than the sensitivity of the previously published analysis of four years exposure. No significant clustering of neutrinos above background expectation was observed, and implications for prominent neutrino source candidates are discussed.Comment: 19 pages, 17 figures, 3 tables; ; submitted to The Astrophysical Journa

    The contribution of Fermi-2LAC blazars to the diffuse TeV-PeV neutrino flux

    Get PDF
    The recent discovery of a diffuse cosmic neutrino flux extending up to PeV energies raises the question of which astrophysical sources generate this signal. One class of extragalactic sources which may produce such high-energy neutrinos are blazars. We present a likelihood analysis searching for cumulative neutrino emission from blazars in the 2nd Fermi-LAT AGN catalogue (2LAC) using an IceCube neutrino dataset 2009-12 which was optimised for the detection of individual sources. In contrast to previous searches with IceCube, the populations investigated contain up to hundreds of sources, the largest one being the entire blazar sample in the 2LAC catalogue. No significant excess is observed and upper limits for the cumulative flux from these populations are obtained. These constrain the maximum contribution of the 2LAC blazars to the observed astrophysical neutrino flux to be 27%27 \% or less between around 10 TeV and 2 PeV, assuming equipartition of flavours at Earth and a single power-law spectrum with a spectral index of 2.5-2.5. We can still exclude that the 2LAC blazars (and sub-populations) emit more than 50%50 \% of the observed neutrinos up to a spectral index as hard as 2.2-2.2 in the same energy range. Our result takes into account that the neutrino source count distribution is unknown, and it does not assume strict proportionality of the neutrino flux to the measured 2LAC γ\gamma-ray signal for each source. Additionally, we constrain recent models for neutrino emission by blazars.Comment: 18 pages, 22 figure

    Safety and clinical outcomes of rituximab therapy in patients with different autoimmune diseases: experience from a national registry (GRAID)

    Get PDF
    Introduction: Evidence from a number of open-label, uncontrolled studies has suggested that rituximab may benefit patients with autoimmune diseases who are refractory to standard-of-care. The objective of this study was to evaluate the safety and clinical outcomes of rituximab in several standard-of-care-refractory autoimmune diseases (within rheumatology, nephrology, dermatology and neurology) other than rheumatoid arthritis or non-Hodgkin's lymphoma in a real-life clinical setting. Methods: Patients who received rituximab having shown an inadequate response to standard-of-care had their safety and clinical outcomes data retrospectively analysed as part of the German Registry of Autoimmune Diseases. The main outcome measures were safety and clinical response, as judged at the discretion of the investigators. Results: A total of 370 patients (299 patient-years) with various autoimmune diseases (23.0% with systemic lupus erythematosus, 15.7% antineutrophil cytoplasmic antibody-associated granulomatous vasculitides, 15.1% multiple sclerosis and 10.0% pemphigus) from 42 centres received a mean dose of 2,440 mg of rituximab over a median (range) of 194 (180 to 1,407) days. The overall rate of serious infections was 5.3 per 100 patient-years during rituximab therapy. Opportunistic infections were infrequent across the whole study population, and mostly occurred in patients with systemic lupus erythematosus. There were 11 deaths (3.0% of patients) after rituximab treatment (mean 11.6 months after first infusion, range 0.8 to 31.3 months), with most of the deaths caused by infections. Overall (n = 293), 13.3% of patients showed no response, 45.1% showed a partial response and 41.6% showed a complete response. Responses were also reflected by reduced use of glucocorticoids and various immunosuppressives during rituximab therapy and follow-up compared with before rituximab. Rituximab generally had a positive effect on patient well-being (physician's visual analogue scale; mean improvement from baseline of 12.1 mm). Conclusions: Data from this registry indicate that rituximab is a commonly employed, well-tolerated therapy with potential beneficial effects in standard of care-refractory autoimmune diseases, and support the results from other open-label, uncontrolled studies

    Two-particle correlations in azimuthal angle and pseudorapidity in inelastic p + p interactions at the CERN Super Proton Synchrotron

    Get PDF
    Results on two-particle ΔηΔϕ correlations in inelastic p + p interactions at 20, 31, 40, 80, and 158 GeV/c are presented. The measurements were performed using the large acceptance NA61/SHINE hadron spectrometer at the CERN Super Proton Synchrotron. The data show structures which can be attributed mainly to effects of resonance decays, momentum conservation, and quantum statistics. The results are compared with the Epos and UrQMD models.ISSN:1434-6044ISSN:1434-605
    corecore