127 research outputs found

    Detecting a relic background of scalar waves with LIGO

    Get PDF
    We discuss the possible detection of a stochastic background of massive, non-relativistic scalar particles, through the cross correlation of the two LIGO interferometers in the initial, enhanced and advanced configuration. If the frequency corresponding to the mass of the scalar field lies in the detector sensitivity band, and the non-relativistic branch of the spectrum gives a significant contribution to energy density required to close the Universe, we find that the scalar background can induce a non-negligible signal, in competition with a possible signal produced by a stochastic background of gravitational radiation.Comment: 17 pages, uses revte

    A class of non-singular gravi-dilaton backgrounds

    Get PDF
    We present a class of static, spherically symmetric, non-singular solutions of the tree-level string effective action, truncated to first order in αâ€Č\alpha'. In the string frame the solutions approach asymptotically (at r→0r\to 0 and r→∞r\to \infty) two different anti-de Sitter configurations, thus interpolating between two maximally symmetric states of different constant curvature. The radial-dependent dilaton defines a string coupling which is everywhere finite, with a peak value that can be chosen arbitrarily small so as to neglect quantum-loop corrections. This example stresses the possible importance of finite-size αâ€Č\alpha' corrections, typical of string theory, in avoiding space-time singularities.Comment: 9 pages, LATEX, four figure included using EPSFIG. Essay written for the 1997 Awards of the Gravity Research Foundation, and selected for "Honorable Mention". To appear in Mod. Phys. Lett.

    Symmetry breaking aspects of the effective Lagrangian for quantum black holes

    Get PDF
    The physical excitations entering the effective Lagrangian for quantum black holes are related to a Goldstone boson which is present in the Rindler limit and is due to the spontaneous breaking of the translation symmetry of the underlying Minkowski space. This physical interpretation, which closely parallels similar well-known results for the effective stringlike description of flux tubes in QCD, gives a physical insight into the problem of describing the quantum degrees of freedom of black holes. It also suggests that the recently suggested concept of 'black hole complementarity' emerges at the effective Lagrangian level rather than at the fundamental level.Comment: 11 pages, Latex,1 figur

    Quantum Inhomogeneities in String Cosmology

    Get PDF
    Within two specific string cosmology scenarios --differing in the way the pre- and post-big bang phases are joined-- we compute the size and spectral slope of various types of cosmologically amplified quantum fluctuations that arise in generic compactifications of heterotic string theory. By further imposing that these perturbations become the dominant source of energy at the onset of the radiation era, we obtain physical bounds on the background's moduli, and discuss the conditions under which both a (quasi-) scale-invariant spectrum of axionic perturbations and sufficiently large seeds for the galactic magnetic fields are generated. We also point out a potential problem with achieving the exit to the radiation era when the string coupling is near its present value.Comment: 30 pages, RevteX, epsfig, 5 figure

    A late-time transition in the equation of state versus Lambda-CDM

    Full text link
    We study a model of the dark energy which exhibits a rapid change in its equation of state w(z), such as occurs in vacuum metamorphosis. We compare the model predictions with CMB, large scale structure and supernova data and show that a late-time transition is marginally preferred over standard Lambda-CDM.Comment: 4 pages, 1 figure, to appear in the proceedings of XXXVIIth Rencontres de Moriond, "The Cosmological Model", March 200

    Modeling and manufacturability assessment of bistable quantum-dot cells

    Get PDF
    We have investigated the behavior of bistable cells made up of four quantum dots and occupied by two electrons, in the presence of realistic confinement potentials produced by depletion gates on top of a GaAs/AlGaAs heterostructure. Such a cell represents the basic building block for logic architectures based on the concept of Quantum Cellular Automata (QCA) and of ground state computation, which have been proposed as an alternative to traditional transistor-based logic circuits. We have focused on the robustness of the operation of such cells with respect to asymmetries deriving from fabrication tolerances. We have developed a 2-D model for the calculation of the electron density in a driven cell in response to the polarization state of a driver cell. Our method is based on the one-shot Configuration-Interaction technique, adapted from molecular chemistry. From the results of our simulations, we conclude that an implementation of QCA logic based on simple ``hole-arrays'' is not feasible, because of the extreme sensitivity to fabrication tolerances. As an alternative, we propose cells defined by multiple gates, where geometrical asymmetries can be compensated for by adjusting the bias voltages. Even though not immediately applicable to the implementation of logic gates and not suitable for large scale integration, the proposed cell layout should allow an experimental demonstration of a chain of QCA cells.Comment: 26 pages, Revtex, 13 figures, title and some figures changed and minor revision

    Thermal behavior of Quantum Cellular Automaton wires

    Full text link
    We investigate the effect of a finite temperature on the behavior of logic circuits based on the principle of Quantum Cellular Automata (QCA) and of ground state computation. In particular, we focus on the error probability for a wire of QCA cells that propagates a logic state. A numerical model and an analytical, more approximate, model are presented for the evaluation of the partition function of such a system and, consequently, of the desired probabilities. We compare the results of the two models, assessing the limits of validity of the analytical approach, and provide estimates for the maximum operating temperature.Comment: 15 pages, 7 figures, uses revte

    Non-local dilaton coupling to dark matter: cosmic acceleration and pressure backreaction

    Full text link
    A model of non-local dilaton interactions, motivated by string duality symmetries, is applied to a scenario of "coupled quintessence" in which the dilaton dark energy is non-locally coupled to the dark-matter sources. It is shown that the non-local effects tend to generate a backreaction which -- for strong enough coupling -- can automatically compensate the acceleration due to the negative pressure of the dilaton potential, thus asymptotically restoring the standard (dust-dominated) decelerated regime. This result is illustrated by analytical computations and numerical examples.Comment: 11 pages, 1 figure ep

    Spectrum of relic gravitational waves in string cosmology

    Get PDF
    We compute the spectrum of relic gravitons in a model of string cosmology. In the low- and in the high-frequency limits we reproduce known results. The full spectrum, however, also displays a series of oscillations which could give a characteristic signature at the planned LIGO/VIRGO detectors. For special values of the parameters of the model the signal reaches its maximum already at frequencies accessible to LIGO and VIRGO and it is close to the sensitivity of first generation experiments

    A family of filters to search for frequency dependent gravitational wave stochastic backgrounds

    Full text link
    We consider a three dimensional family of filters based on broken power law spectra to search for gravitational wave stochastic backgrounds in the data from Earth-based laser interferometers. We show that such templates produce the necessary fitting factor for a wide class of cosmological backgrounds and astrophysical foregrounds and that the total number of filters required to search for those signals in the data from first generation laser interferometers operating at the design sensitivity is fairly smallComment: 4 pages, 4 figures, uses iopart.cls, accepted for publications on Classical and Quantum Gravity (Special Issue, Proceedings of Amaldi 2003
    • 

    corecore