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1 Introduction

Perhaps the most appealing feature of standard inflationary cosmology [1] is its abil-

ity to stretch out generic/arbitrary initial classical inhomogeneities and to replace them

by a calculable spectrum of cosmologically amplified quantum fluctuations. The latter

behave, for all physical purposes, as a set of properly normalized stochastic classical per-

turbations. A much advertised outcome of slow-roll inflation is a (quasi-) scale-invariant

(Harrison-Zeldovich (HZ)) spectrum of density fluctuations, a highly desirable feature

for explaining both the CMB temperature fluctuations on large angular scales and the

large-scale structure of the visible part of our Universe.

The so-called pre-big bang (PBB) scenario [2, 3] offers, within the context of string

theory, an alternative to the usual inflationary paradigm. Provided a graceful exit can be

achieved (see [4, 5] for recent progress on this issue), the PBB scenario exhibits several

appealing advantages, e.g.

1



J
H
E
P
0
1
(
1
9
9
8
)
0
0
4

• it naturally provides inflationary solutions through the duality symme-

tries [6] of string theory;

• it assumes a natural, simple, initial state for the Universe, which is fully

under control: the perturbative vacuum of superstring theory;

• it needs no fine-tuning of couplings and/or potentials: the inflaton is iden-

tified with the dilaton, which is ubiquitous in string theory, is effectively

massless at weak coupling, and provides inflation through its kinetic energy;

• it can provide a hot big bang initial state as a late-time outcome of the pre-

big bang phase, through the amplification of vacuum quantum fluctuations

generated in this latter phase.

In recent work [7, 8] we have discussed the conditions under which classical inhomo-

geneities get efficiently erased in string cosmology. In general, this does occur provided

two moduli of the classical solutions at weak coupling and curvature (basically an initial

coupling and an initial curvature scale) are bounded from above. Whether such condi-

tions correspond to an acceptable degree of fine-tuning of the initial conditions or not is

still the matter of some controversy [9, 10, 8].

An interesting outcome of these investigations has been a motivated conjecture [8]

that, for negative spatial curvature, the pre-big bang phase itself is generically preceded

by a contracting “Milne” phase, corresponding to a particular parametrization of the past

light cone of trivial Minkowski space-time with a constant dilaton. Such a background,

the trivial all-order classical vacuum of superstring theory, turns out to be an unstable

early-time fixed point of the evolution. Thanks to dilaton/metric fluctuations, it appears

to lead, inevitably, to pre-big bang-type inflation at later times.

In this paper we shall assume that the above classical picture effectively wipes out,

during its long pre-big bang phase, spatial curvature and classical inhomogeneities, and

we move on to analyse the second alleged virtue of inflationary cosmology, the genera-

tion of an interesting spectrum of amplified quantum fluctuations. As several previous

investigations have shown [11, 13, 14, 15], achieving this is not at all automatic in string

cosmology. It was soon realized that, in the simplest PBB scenario, tensor [11] and

scalar-dilaton [13] perturbations tend to have steep spectra (typically a spectral index

n = 4, as compared to HZ’s n = 1). Perturbations of gauge fields coming from compacti-

fication of the extra 16 bosonic dimensions of heterotic string theory can have somewhat

smaller spectral indices [15], but still in the range 3 < n < 4.

The situation can be improved by assuming [11] that a long string phase (during which

the dilaton grew linearly in cosmic time while the Universe expanded exponentially) took

place between the dilaton and the usual FRW phase. In such a case, it is possible to

get either an interesting spectrum of gravitational waves [11] in the range of interest for

detection, or enough EM perturbations to explain the magnetic fields [15], but not both,

apparently. A flat spectrum of EM perturbations, which can possibly provide a new

mechanism for generating large scale structure [16] is not excluded either.
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Recently, however, Copeland et al. [17] made the interesting observation that axionic

perturbations, even in the absence of a string phase, can have a flat spectrum, depend-

ing on how the internal dimensions evolve during the dilatonic phase. Unfortunately,

Copeland et al. stopped short of computing the axionic spectrum after re-entry. Nonethe-

less, their result hints at a possible dominance of axionic perturbations over all others

and calls for a revision of the whole scenario and of the phenomenological constraints

that must be imposed on it.

In this paper we analyse quantum fluctuations of various kinds in two distinct scenarios

for the background, with or without an intermediate string phase. We may expect either

possibility to occur, depending on the precise mechanism providing the transition (exit)

from the PBB phase into the FRW phase.

An intermediate string phase is natural if we assume [4] that α′ corrections provide

a non-perturbative fixed point with a high constant curvature and a linearly growing

dilaton. In this case we expect the transition to the FRW phase to occur during the

string phase as soon as the energy stored in the quantum fluctuations reaches criticality

(recall that the condition of criticality depends on the coupling). This is like saying that

the final transition to the radiation-dominated era will be induced by string-loop, back-

reaction effects (see, e.g. [5]).

We can imagine, instead, that α′ corrections are sufficient to provide by themselves

a sudden branch-change from the perturbative PBB phase to another duality-related

vacuum phase, with the Hubble parameter making a bounce around its maximal value.

In the language of [4] this would correspond to a square-root-type vanishing of a β-

function. Again, the dual (− branch) phase will gently yield to a FRW Universe as soon

as the energy stored in the quantum fluctuations becomes critical.

As already mentioned, an important ingredient of our approach is the (self-consistent)

requirement of criticality at the beginning of the radiation era. This provides a new

relation between the moduli of the PBB background and the coupling and energy density

(or temperature) at the beginning of the radiation era. As we will see, the dilaton at the

beginning of this era is generically displaced from its eventual/present value; hence this

primordial radiation era is not yet quite the one of standard cosmology. It may take a

while before the non-perturbative dilaton potential makes its presence felt and forces the

dilaton to its minimum. The detailed study of such post-big bang phase is left to further

work.

One of the main conclusions of this paper is that, provided U(1)em has a component in

the Kaluza-Klein gauge group produced in the compactification from D = 10 to D = 4,

sufficiently large seeds for galactic magnetic fields can be generated, even in the absence of

a string phase. Furthermore, this happens in the same range of moduli for which a nearly

scale-invariant spectrum of axionic perturbations is generated. Such a range includes a

particularly symmetric point in moduli space, the one corresponding to isotropy (up to

T-duality transformations) in all nine spatial dimensions.

The outline of the paper is as follows: In Sec. 2 we give, for the sake of completeness,

the four-dimensional low-energy string-level heterotic effective action that we will work
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with. In Sec. 3 we fix our parametrization of the backgrounds for the two previously

discussed scenarios. In Sec. 4 we derive general formulae for the spectra of various per-

turbations, which get amplified by a generic background of the kind discussed in Sec. 3.

We will verify that our spectra satisfy a “duality” symmetry that can be shown to follow

from general arguments [18]. In Sec. 5 we give the explicit form of the spectra for the

two backgrounds discussed in Sec. 3, and present them in various tables and plots. We

will also impose the criticality condition and discuss its immediate consequences. Finally,

Sec. VI contains a discussion of the results and some conclusions.

This paper is somewhat technical in nature and contains explicit general formulae

that can be useful to the practitioner but do not carry easy messages: these can be better

found in the tables and figures. At any rate, in order to help the reader, we have relegated

the most complicated formulae to an appendix.

2 String effective action from dimensional reduction

Following the notations of [19] we consider superstring theory in a space-time M× K,

whereM, with Minkowskian signature, has four non-compact dimensions, and K consists

of six compact dimensions upon which all fields are assumed to be independent. Local

coordinates of M are labelled by µ, ν, ρ = 0, . . . , 3, those of K by a, b, c = 4, . . . , 9.

Moreover, all ten-dimensional fields and indices are distinguished by a hat.

We will limit ourselves to the case of a diagonal metric for the internal six-dimensional

compact space, of a non-vanishing internal antisymmetric-tensor and of one Abelian het-

erotic U(1) gauge field Aµ:

ĝµ̂ν̂ =

(
gµν + gab V

a
µ V b

ν gab V
b
µ

gab V
b
ν gab

)
, (2.1)

B̂µ̂ν̂ =

(
Bµν Wµa −Bab V

b
µ

−Wνa +Bab V
b
ν Bab

)
. (2.2)

In the following we take gab = e2σa δab.

The low-energy four-dimensional effective string action is

SBeff = 1
2λ2
s

∫
d4x
√
−g e−ϕ

[
R+ gµν∂µϕ∂νϕ− gµν ∂µσa ∂νσa −

1
4
e2σa V a

µν V
µνa + 1

4
FµνF

µν

−1
4
e−2σa HµνaH

µν
a −

1
12
HµνρH

µνρ − 1
4
gµνe−2σb e−2σc ∂µBbc ∂νBbc

]
, (2.3)

where λs =
√

8π/Ms is the string-length parameter,

Hµνρ = ∂µBνρ −
1

2

[
V a
µ Wνρa +Wµa V

a
νρ

]
−

1

2
Aµ Fνρ + cyclic perm. , (2.4)

Hµνa = Wµνa − Bab V
b

µν , Fµν = ∂µAν − ∂νAµ , (2.5)

V a
µν = ∂µV

a
ν − ∂νV

a
µ , Wµνa = ∂µWνa − ∂νWµa , (2.6)
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and ϕ stands for the effective four-dimensional dilaton field:

ϕ = φ−
∑
a

σa .

The components of the antisymmetric tensor Hµνρ with µ, ν, ρ = 0, 1, 2, 3 can be rewritten

in terms of the pseudoscalar axion A as

Hµνρ ≡ Eµνρσ eϕ ∂σA , (2.7)

where Eµνρσ is the covariant full antisymmetric Levi-Civita tensor, satisfying DαEµνρσ =

0. Using eq. (2.4), and imposing the Bianchi identity (d2B = 0), we get the equation of

motion for the axion field

∂µ(e
ϕ
√
−g gµν ∂νA)−

1

8

εµνρσ
√
−g

[
2Wµνa V

a
ρλ + Fµν Fρσ

]
= 0 . (2.8)

The reduced action then becomes

SAeff =
1

2λ2
s

∫
d4x
√
−g e−ϕ

[
R+ gµν ∂µϕ∂νϕ− gµν ∂µσa ∂νσa −

1

4
e2σa V a

µν V
µνa

−
1

4
e−2σa HµνaH

µν
a −

1

2
e2ϕ gµν ∂µA∂νA−

1

8
eϕ
Aεµνρσ
√
−g

[
2Wµνa V

a
ρλ + Fµν Fρσ

]
+

1

4
Fµν F

µν −
1

4
gµνe−2σb e−2σc ∂µBbc ∂νBbc

]
. (2.9)

We are interested in fluctuations around a homogeneous background with ϕ = ϕ(t),

gµν = (−1, a2(t) δij , b
2
c(t) δcd) , i, j = 1, 2, 3 , c, d = 4, . . . , 9 ,

And all the other fields equal to zero. In the following we will also use the metric gµν =

(−a2(η), a2(η)δij , b
2
c(η) δdc), where we have introduced the conformal time η by dη = dt/a.

3 Two models for the background

If the initial value of the string coupling is sufficiently small, it is possible for the

Universe to reach the high curvature regime, where higher-derivative corrections are

important, while the string coupling is still small enough to neglect loop corrections

(g = expϕ/2� 1). As discussed in the introduction, we will consider two extreme alter-

natives. In the first, α′ corrections “lock” the Universe in a string phase with a constant

H and a linearly growing dilaton (with respect to cosmic time) [4]; in the second scenario,

α′ corrections induce a sudden transition from a perturbative (+) branch solution to a

perturbative (−) branch phase. We will refer to the latter as the dual-dilaton phase.

We will thus consider a PBB cosmological background in which the Universe starts

in the perturbative string vacuum, reaches the string curvature scale while in a dilaton-

vacuum solution, goes either to the dual-dilaton phase or to the string phase, and finally

enters the radiation era as a result of the back-reaction from the amplified quantum

fluctuations. We now parametrize these two scenarios for the backgrounds, imposing the

continuity of a, a′, ba, b
′
a, ϕ.
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3.1 Intermediate dual dilaton phase

• Dilaton phase

For −∞ < η < ηs, with ηs < 0 we have

a(η) = −
1

Hs ηs

∣∣∣∣∣η (1− δ)− ηs
δ ηs

∣∣∣∣∣
δ/(1−δ)

, (3.1)

ba(η) = −Hs ηs

∣∣∣∣∣(η − ηs) (1− δ)− βa ηs
βa ηs

∣∣∣∣∣
βa/(1−δ)

= eσa , (3.2)

ϕ(η) = ϕs +
3δ − 1

1− δ
log

∣∣∣∣∣η (1− δ)− ηs
δ ηs

∣∣∣∣∣ , (3.3)

1 = 3δ2 +
∑
a

β2
a , (3.4)

where Hs = a′(ηs)/a
2(ηs) is of order Ms. We will consider the case δ < 0 and βa > 0, i.e. a

superinflationary solution with contracting internal dimensions. Because of the constraint

between δ and βa, if |δ| < 1/
√

3, some of the βa must be non-vanishing. In what follows

we will pick two extreme cases: i) the most isotropic case, with βa =
√

(1− 3δ2)/6, or ii)

the most anisotropic one, with βa = δa1

√
(1− 3δ2). In figures we shall denote these two

cases by a subscript 6 and 1, respectively.

• Dual-dilaton phase

For ηs < η < η1, with η1 > 0 we take

a(η) = −
1

Hs ηs

∣∣∣∣∣η (1− θ)− ηs
θ ηs

∣∣∣∣∣
θ/(1−θ)

, (3.5)

ba(η) = −Hs ηs

∣∣∣∣∣(η − ηs) (1− θ)− ξa ηs
ξa ηs

∣∣∣∣∣
ξa/(1−θ)

, (3.6)

ϕ(η) = ϕs +
3θ − 1

1− θ
log

∣∣∣∣∣η (1− θ)− ηs
θ ηs

∣∣∣∣∣ , (3.7)

where 3θ2 +
∑
a ξ

2
a = 1 and we will fix θ > 0 and ξa < 0, i.e. a decelerated expansion for

the external scale factor and a decelerated contraction for the internal ones. Again, we

distinguish two cases, ξa = −
√

(1− 3θ2)/6 or ξa = −δa1

√
(1− 3θ2).

• Radiation phase

In the region η1 < η < ηeq, with ηeq the time of equivalence between radiation and

matter density, we write

a(η) =
(η − η1 − ηs)

Hs η2
s

∣∣∣∣∣η1 (1− θ)− ηs
θ ηs

∣∣∣∣∣
θ/(1−θ)

, (3.8)

ϕ(η) = const. , ba(η) = const. (3.9)
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3.2 Intermediate string phase

• Dilaton phase

We parametrize this phase exactly as before. Thus, for −∞ < η < ηs < 0, Eqs. (3.1)

to (3.4) hold.

• String phase

For ηs < η < η1, with η1 < 0

a(η) = −
1

Hs η
, ba(η) = const. , ϕ(η) = ϕs − 2ζ log

(
η

ηs

)
, (3.10)

hence a constant Hubble parameter for the external scale factor.

• Radiation phase

In the range η1 < η < ηeq we have

a(η) =
1

Hs η
2
1

(η − 2η1) , ba(η) = const. , ϕ(η) = const. (3.11)

An important property of these backgrounds is that the derivative of the field ϕ is not

continuous across the two transitions. This reflects the fact that we do not have as yet

a satisfactory model for the transitions from one epoch to another. As discussed below,

this discontinuity creates a technical problem, which has to be judiciously solved in order

to correctly compute the spectrum of perturbations around this kind of backgrounds.

4 Amplification of vacuum fluctuations

Let us consider a generic massless field, whose quadratic fluctuations are described by the

action

δS =
∫
dη ã2

[
(Ψ′)2 − (∇Ψ)2

]
, (4.1)

where a prime stands for derivative with respect to conformal time η and ã, the so-

called “pump” field, is a homogeneous background field that depends on the particular

perturbation under study.

The safest way to analyse the amplification of the vacuum fluctuations of Ψ makes use

of a canonical Hamiltonian approach and leads to the derivation [18] of certain duality

symmetries of the spectra. We will use instead the simpler Lagrangian method and

fix some ambiguity encountered in that approach by demanding agreement with the

Hamiltonian treatment. We believe, of course, that our prescription can also be fully

justified within the Lagrangian framework.

The equation of motion for the Fourier components of Ψ is

Ψ′′k + 2
ã′

ã
Ψ′k + k2 Ψk = 0 . (4.2)

Introducing the canonical variable

vk = ãΨk , (4.3)

7
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eq. (4.2) can be rewritten in the form

d2vk
dη2

+
[
k2 − U(η)

]
vk = 0 , U(η) =

1

ã

d2ã

dη2
. (4.4)

In order to get general formulae for the spectrum we parametrize the pump field in the

three epochs as follows:1

ã =

(
η

ηs

)γ
−∞ < η < ηs < 0 , (4.5)

ã =

∣∣∣∣∣η − 2ηs
ηs

∣∣∣∣∣
κ

ηs < η < η1 , η1 > 0 , (4.6)

ã =

(
η

η1

)α ∣∣∣∣∣η1 − 2ηs
ηs

∣∣∣∣∣
κ

η1 < η < ηeq . (4.7)

4.1 Analytic form for the Bogoliubov coefficients

The solutions of the equation of motion (4.4) for the pump fields (4.5), (4.6) and (4.7)

are respectively

vk(η) =
√
|η|C H(1)

ν (k|η|) , (4.8)

vk(η) =
√
|(η − 2ηs)|

[
A+ H

(1)
µ (k|(η − 2ηs)|) + A−H

(2)
µ (k|(η − 2ηs)|)

]
, (4.9)

vk(η) =
√
|η|

[
B+ H

(1)
ρ (k|η|) +B−H

(2)
ρ (k|η|)

]
, (4.10)

where

ν = |γ − 1/2| , µ = |κ− 1/2| , ρ = |α− 1/2| (4.11)

and we have normalized (4.8) allowing only positive frequencies in the flat vacuum state

at η → −∞, so that

vk(η)→
C
√
k
e−ikη (4.12)

and |C| = 1. For reasons explained below we impose the continuity of Ψk and of its first

derivative at ηs, η1, not the continuity of the canonical field vk. Using the relation

H(2)′
µ (z)H (1)

µ (z)−H (1)′
µ (z)H (2)

µ (z) = −4i/(πz) ,

we obtain

A+ = C
iπ

4

{
(k|ηs|)

[
H(1)
ν (k|ηs|)H

(2)′
µ (k|ηs|)−H

(1)′
ν (k|ηs|)H

(2)
µ (k|ηs|)

]
+ (γ − κ)H(1)

ν (k|ηs|)H
(2)
µ (k|ηs|)

}
, (4.13)

A− = C
iπ

4

[
(k|ηs|)

[
H(1)
µ (k|ηs|)H

(1)′
ν (k|ηs|)−H

(1)′
µ (k|ηs|)H

(1)
ν (k|ηs|)

]
+ (κ− γ)H(1)

ν (k|ηs|)H
(1)
µ (k|ηs|)

}
, (4.14)

1In order to simplify the final expression of the Bogoliubov coefficients, we have slightly changed the

constant parameters appearing in the pump field in the three phases. With the original parameters of

Sect. 3, the Bogoliubov coefficients would just change by numerical factors O(1), but the spectral slopes

and the “duality” symmetry (see sect. 4.2) would still be the same.
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and

B+ =
iπ

4

{[
A+ H

(1)
µ (k |η1|) + A−H

(2)
µ (k |η1|)

] [
(k η1)H

(2)′
ρ (k |η1|) + (κ− α)H (2)

ρ (k |η1|)
]

−(k η1)
[
A+ H

(1)′
µ (k |η1|) + A−H

(2)′
µ (k |η1|)

]
H(2)
ρ (k |η1|)

}
, (4.15)

B− = −
iπ

4

{[
A+ H

(1)
µ (k |η1|) + A−H

(2)
µ (k |η1|)

] [
(k η1)H

(1)′
ρ (k |η1|) + (κ− α)H (1)

ρ (k |η1|)
]

−(k η1)
[
A+ H

(1)′
µ (k |η1|) + A−H

(2)′
µ (k |η1|)

]
H(1)
ρ (k |η1|)

}
, (4.16)

where the prime stands for derivative with respect to the argument of the Hankel function.

From the condition |C| = 1 we get |A+|2 − |A−|2 = 1 and |B+|2 − |B−|2 = 1, as needed

for generic Bogoliubov coefficients.

4.2 “Duality” of the Bogoliubov coefficients

In this section we analyse the behaviour of the Bogoliubov coefficients B− and A− under

the “duality” transformation γ → −γ, κ→ −κ and α→ −α, under which the pump fields

are reversed. We will thus check that, with a careful choice of the matching conditions, the

symmetry that can be shown to be exact in the Hamiltonian approach [18] is preserved.

In our context we need the following relations among Hankel functions (see e.g. [20])

H
(1,2)
−ξ (z) = e±iπξH

(1,2)
ξ (z) , (4.17)

z H
(1,2)
ξ−1 (z) + z H

(1,2)
ξ+1 (z) = 2ξ H

(1,2)
ξ (z) , (4.18)

z d
dz
H

(1,2)
ξ (z) + z H

(1,2)
ξ (z) = ξ H

(1,2)
ξ−1 (z) . (4.19)

Independently of the range of frequencies we get

A−(γ, κ)

A−(−γ,−κ)
= exp

[
iπ +

iπ

2

(∣∣∣∣γ +
1

2

∣∣∣∣+ ∣∣∣∣κ+
1

2

∣∣∣∣− ∣∣∣∣γ − 1

2

∣∣∣∣− ∣∣∣∣κ− 1

2

∣∣∣∣)] , (4.20)

B−(γ, κ, α)

B−(−γ,−κ,−α)
= exp

[
iπ +

iπ

2

(∣∣∣∣γ +
1

2

∣∣∣∣+ ∣∣∣∣α +
1

2

∣∣∣∣− ∣∣∣∣γ − 1

2

∣∣∣∣− ∣∣∣∣α− 1

2

∣∣∣∣)] . (4.21)

There are two important comments to be made on the above formulae. The first

is that B−(−γ,−κ,−α) differs from B−(γ, κ, α) by just a phase. Hence the spectrum

(being proportional to |B−|2) is identical for a given pump field or for its inverse. We

stress that this duality property holds independently of the number and characteristics

of the intermediate phases and thus, as argued in [18], is generally valid. The second

observation is that duality depends crucially on having imposed the continuity of the

field and of its derivative on Ψk and not on the canonical field vk. The difference in

imposing continuity of Ψk or of vk arises from the discontinuous nature of the background

itself (actually of ϕ̇) and from the fact that Ψk and vk obey equations containing first

and second time-derivatives of the pump field, respectively. This gives rise to δ-function

contributions in the case of vk, making the requirement of continuity suspicious for that

variable.
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One welcome consequence of “duality” is the fact that the antisymmetric tensor field

and the axion have identical spectra since their pump fields are the inverse of each other

(see below). This must be so since they are just different descriptions of the same physical

degree of freedom.

4.3 General form of the spectral slopes

The parameters ηs and η1 in the formulae for B− define two characteristic comoving

frequencies, ks = |ηs|−1, k1 = |η1|−1, which can be traded for two proper frequencies fs
and f1 by the standard relations

2πfs =

(
ks

a

)
, 2πf1 =

(
k1

a

)
. (4.22)

Exponents Bogoliubov coefficient
Leading

contribution
Power of f (εΥ)

γ > 1/2, α > 1/2, ∀κ C1, C2, C3, C4 6= 0 C1 1− |γ| − |α|

γ > 1/2, α < 1/2, ∀κ C1, C2, C4 6= 0, C3 = 0 C1 −|γ − α|

γ < 1/2, α > 1/2, ∀κ C1, C3, C4 6= 0, C2 = 0 C1 −|γ − α|

γ < α, γ < 1/2, |α| < 1/2, ∀κ C1 = 0, C2, C3, C4 6= 0 C2 −|γ − α|

γ > α, α < 1/2, |γ| < 1/2, ∀κ C1 = 0, C2, C3, C4 6= 0 C3 −|γ − α|

γ < −1/2, α < −1/2, ∀κ C1 = 0, C2, C3, C4 6= 0 C4 1− |γ| − |α|

Table 1: Power of f in the Bogoliubov coefficient B− for f � f1, fs

It is easy to see that the two scenarios for the background, intermediate dual dilaton

phase and intermediate string phase, lead to fs > f1 and fs < f1, respectively. In the

case f � fs, f1 (fluctuations that exit in the dilaton phase and re-enter in the radiation

phase), which is common to both scenarios, we can approximate the exact result (4.16)

for the Bogoliubov coefficient B− in the following way2

B− = C1 + C2 + C3 + C4 + · · ·

where

C1 = N1

(
f

2fs

)−ν (
f

2f1

)−ρ [
C1

1

(
f1

fs

)µ
+ C2

1

(
fs
f1

)µ ]
, (4.23)

C2 = N2

(
f

2fs

)−ν (
f

2f1

)ρ [
C1

2

(
f1

fs

)µ
+ C2

2

(
fs
f1

)µ ]
, (4.24)

C3 = N2

(
f

2fs

)ν (
f

2f1

)−ρ [
C1

3

(
f1

fs

)µ
+ C2

3

(
fs

f1

)µ ]
, (4.25)

2We have used the following relations for ν not integer: H
(1,2)
ν = (1 ± i cot νπ)Jν ∓

i
sin νπ J−ν , with

Jν =
(
z
2

)ν ∑∞
k=0

(−1)k

kΓ(ν+k+1)

(
z
2

)2k
, assuming ν 6= 0.
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C4 = N4

(
f

2fs

)1−ν (
f

2f1

)1−ρ
C1

4

(
fs

f1

)µ−1

+ C2
4

(
f1

fs

)µ+1

+ C3
4

(
f1

fs

)µ−1

+ C4
4

(
fs

f1

)µ+1
 .

(4.26)

Since, by their definition (4.11), ν, ρ > 0, C1 gives the leading contribution unless the

coefficients appearing in front of it vanish. Table 1 shows which one of the Ci is dominant

for different choices of the background parameters.

In the case f1 � f � fs (fluctuations that exit in the dilaton phase and re-enter in

the dual-dilaton phase) we get instead:

B− = D1

(
f

2fs

)−µ−ν
+D2

(
f

2fs

)µ−ν
+D3

(
f

2fs

)−µ+ν

+D4

(
f

2fs

)2−µ−ν

. (4.27)

Table 2 shows the leading contribution to B− in this case. The explicit form of the

coefficients Ni, C
j
i and Di for both cases is given in the appendix.

Exponents Bogoliubov coefficient
Leading

contribution
Power of f (εΥ)

γ > 1/2, κ > 1/2 D1,D2,D3,D4 6= 0 D1 1− |γ| − |κ|

γ > 1/2, κ < 1/2 D1,D2,D4 6= 0, D3 = 0 D1 −|γ − κ|

γ < 1/2, κ > 1/2 D1,D3,D4 6= 0,D2 = 0 D1 −|γ − κ|

γ < κ, γ < 1/2, |κ| < 1/2 D1 = 0, D2,D3,D4 6= 0 D2 −|γ − κ|

γ > κ, κ < 1/2, |γ| < 1/2 D1 = 0, D2,D3,D4 6= 0 D3 −|γ − κ|

γ < −1/2, κ < −1/2 D1 = 0, D2,D3,D4 6= 0 D4 1− |γ| − |κ|

Table 2: Power of f in the Bogoliubov coefficient B− for an intermediate dual-dilaton phase

and f1 � f � fs

Tables (1 and 2) also show the leading power of f appearing in the Bogoliubov coef-

ficient B−, in the two above-mentioned cases, i.e. re-entry in the dual-dilaton or in the

radiation phase. We can summarize this behaviour as follows:

|B−|
2 ∼ f 2−2|γ|−2|α| γ > 1/2 , α > 1/2 or γ < −1/2 , α < −1/2 , (4.28)

|B−|
2 ∼ f−2|γ−α| all other cases . (4.29)

In the case of an intermediate string phase the Bogoliubov coefficient for fs � f � f1

(fluctuations that exit in the string phase and re-enter in the radiation phase) is given by

eq. (4.27) after the substitution γ → κ, κ→ α (hence ν → µ, µ→ ρ).

The spectrum of fluctuations for a generic field Υ is

ΩΥ =
1

ρc

dρΥ

d log f
= NΥ

8π2

ρc
f 4 |BΥ

− |
2 , (4.30)

where NΥ is the number of polarization states. We have found it convenient to use a

“spectral slope” parameter nΥ defined by the relation

nΥ =
d log ΩΥ

d log f
= 4 + 2εΥ , (4.31)
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Particles (Υ) Pump field (ã) Spectral slope nΥ

re-entry dual phase re-entry radiation phase

Gravitons a e−ϕ/2 4 3

Axions a eϕ/2 4− 4
∣∣∣ δ
1−δ −

θ
1−θ

∣∣∣ 4− 2
∣∣∣3
2
− 2δ

1−δ

∣∣∣
Heterotic photons e−ϕ/2 4− 2

∣∣∣ δ
1−δ −

θ
1−θ

∣∣∣ 4− 2
∣∣∣1
2
− δ

1−δ

∣∣∣
Vµν e−ϕ/2+σ 4− 2

∣∣∣ (δ−βa)
1−δ

− (θ−ξa)
1−θ

∣∣∣ 4− 2
∣∣∣1
2
− (δ−βa)

1−δ

∣∣∣
Wµν e−ϕ/2−σ 4− 2

∣∣∣ (δ+βa)
1−δ −

(θ+ξa)
1−θ

∣∣∣ 4− 2
∣∣∣1
2
− (δ+βa)

1−δ

∣∣∣
Bab a e−ϕ/2−2σ 4− 4

∣∣∣ βa
1−δ
− ξa

1−θ

∣∣∣ 3− 4βa
1−δ

Table 3: Spectral slopes for an intermediate dual-dilaton phase in the range f � f1 (re-entry

in radiation phase) and in the range f1 � f � fs (re-entry in dual-dilaton phase)

where εΥ is the exponent appearing in the f -dependence of |BΥ
− | (see Tables 1 and 2). The

spectral slope, which is simply related to the usual spectral index by slope = (index − 1),

is more convenient to describe the main property of the spectrum, since its sign tells us

whether the spectrum is increasing or decreasing with f . We will now apply the above

general results to various possible backgrounds and perturbations occurring in string

theory.

Particles (Υ) Pump field (ã) Spectral slope nΥ

Exit in dilaton phase Exit in the string phase

Gravitons a e−ϕ/2 3

{
6− 2ζ ζ > 3

2

2ζ ζ < 3
2

Axions a eϕ/2 4− 2
∣∣∣3
2
− 2δ

1−δ

∣∣∣ −2ζ

Heterotic photons e−ϕ/2 4− 2
∣∣∣1
2
− δ

1−δ

∣∣∣ 4− 2ζ

Vµν e−ϕ/2+σ 4− 2
∣∣∣1
2
− (δ−βa)

1−δ

∣∣∣ 4− 2ζ

Wµν e−ϕ/2−σ 4− 2
∣∣∣1
2
− (δ+βa)

1−δ

∣∣∣ 4− 2ζ

Bab a e−ϕ/2−2σ 3− 4βa
1−δ

{
6− 2ζ ζ > 3

2

2ζ ζ < 3
2

Table 4: Spectral slopes for an intermediate string phase in the frequency ranges f � fs (exit

in dilaton phase) and fs � f � f1 (exit during the string phase)

5 Application to our specific situations

We now discuss the explicit form of the Schrödinger-like equation (4.4) for the fields

occurring in the action (2.9). This amounts to finding, for each perturbation, the relevant

pump field and canonical variable. For gravitons and dilatons we refer to [11, 12, 13]. For

Vµ and Wµ the equations of motion are

∂µ
(√
−g e−ϕ e2σa V µνa

)
= 0 , (5.1)

∂µ
(√
−g e−ϕ e−2σaW µνa

)
= 0 . (5.2)
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Using the gauge W0a = 0 = V0a eliminates one unphysical degree of freedom. However,

since the dilaton depends only on time, we can use the equations of motion to further

require ∇ · ~Va = 0,∇ · ~Wa = 0. The equations for the vector fields then take the form

(4.1) and their canonical variables are simply:

ψjV a = V j
a e
−ϕ/2+σa , (5.3)

ψjWa = W j
a e
−ϕ/2−σa . (5.4)

The same procedure has been applied for heterotic photons in [15]. For the axion field

the equation of perturbations around the zero field solution is [17]

A′′k + 2
a′

a
A′k + ϕ′A′k + k2Ak = 0 , (5.5)

and the canonical variable therefore is vk = eϕ/2 aAk. It is straightforward to obtain

the equation of perturbations for the Bµν-field and its canonical variable, i.e. vk =

e−ϕ/2 a−1Bk.

Note that, since the pump fields of the axion and the antisymmetric tensor are duality

related, the spectrum of their fluctuations will be the same. For the internal B-field we

get instead vk = a e−ϕ/2−2σ Bk. A list of all relevant “pump” fields can be found in Tables

3 and 4. In the first we give the spectral slope for various fluctuations in the case of an

intermediate dual-dilaton phase. The same is done in Table IV for an intermediate string

phase. We now turn to discussing perturbations in the two scenarios.

5.1 Intermediate dual-dilaton phase

In this scenario, the super-inflationary phase ends at time η = ηs. Since we assume such

a phase to have washed out any initial spatial curvature, the energy density must always

be critical. At η = ηs the dominant source of energy is the kinetic energy of the dilaton,

ρϕ(ηs) ∼M4
s e
−ϕs .

Consider now the energy stored in the amplified perturbations during the dual-dilaton

phase. Figs. 1, 2 and 3 give the spectral slopes in various cases for the two relevant

frequency ranges. Fig. 4 gives the normalization of the spectra in the whole frequency

range for the particular case θ = 1/
√

3, δ = −0.3. Since all perturbations are of the

same order at the maximal amplified frequency (here fs), perturbations with (the most)

negative spectral slope dominate over all others. From the above mentioned figures we see

that the spectral slope of axionic fluctuations re-entering during the dual dilaton phase

is generally the most negative one (at least if we consider isotropic compactifications):

we thus ignore contributions to the energy density from perturbations other than the

axion’s. The basic idea is to assume that the transition from the dual-dilaton phase to

the radiation phase occurs precisely when the energy density in the perturbations becomes

critical and starts to dominate over the kinetic energy of the coherent dilaton field.

Let us fix for simplicity θ = 1/
√

3 (i.e. frozen internal dimensions in the dual-dilaton

phase) and then impose criticality at the end of the dual-dilaton phase in the form:

M2
s H

2
1 ' eϕ1 ρA(η1) . (5.6)
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Figure 1: Spectral slopes for fluctuations that re-enter in the dual-dilaton phase when the

latter is characterized by θ = 1/
√

3 (i.e. by constant moduli).

Using the equations of motion and assuming |η1| � |ηs|, we have

H1 'Ms

∣∣∣∣∣ηsη1

∣∣∣∣∣
(3+
√

3)/2

, eϕ1 ' eϕs
∣∣∣∣∣ηsη1

∣∣∣∣∣
−
√

3

. (5.7)

Taking into account the results of Sec. 4 we get, apart from factors O(1),

ρA(η1) ' f 4
s (ηs)

(
as

a1

)4
(
f1

fs

)nA
' f 4

s (ηs)

∣∣∣∣∣ηsη1

∣∣∣∣∣
4/(1−δ)

, nA < 0 , (5.8)

where we have restricted ourselves to the case nA < 0 for the reasons explained above.

The dependence of the value of the dilaton background at η = η1 on the parameter δ

is completely fixed by the criticality condition eq. (5.6). Indeed, inserting Eqs. (5.7) and

(5.8) in eq. (5.6), we obtain

eϕ1 '

∣∣∣∣∣ηsη1

∣∣∣∣∣
3+
√

3−4/(1−δ)

. (5.9)

If we define an effective temperature Teff at the beginning of the radiation era by

ρA(η1) ' T 4
eff , (5.10)

we get ∣∣∣∣∣ηsη1

∣∣∣∣∣ '
(
Teff

Ms

)1−δ

, (5.11)

where we have assumed fs(ηs) ∼Ms, and thus

eϕ1 '
(
Teff

Ms

)(1−δ)(3+
√

3)−4

. (5.12)
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Figure 2: Same as Fig. 1 where, instead of fixing θ, we fix δ = −0.26 in the intermediate phase.

It is important to stress that this effective temperature may have nothing to do with the

actual temperature of a relativistic gas in thermal equilibrium at η = η1. In particular, if

the coupling is still very small, axions may not thermalize at all, in spite of dominating

the energy and of driving a radiation-dominated era. For the same reason, the fact that

Teff can be large in string units should not be a matter of concern.

Let us now estimate the value of the frequencies fs and f1 at present time. If we

assume that the CMB photons we observe today carry the (red-shifted) energy of the

primordial perturbations (in particular from axion decay), we have

2πf1 =
k1

a0

'
a1

a0

H1 , (5.13)

Ωγ(t0) =
1

G(η1)M2
Pl

H2
1

H2
0

(
a1

a0

)4

, (5.14)

f 4
1 ' G(η1)M

2
Pl H

2
0 H

2
1 Ωγ(t0) ' eϕ1 H2

0 H
2
1 Ωγ(t0)M

2
Pl/M

2
s , (5.15)

where H0 and Ωγ(t0) (∼ 10−4) are respectively the Hubble parameter and the fraction of

the critical energy stored in radiation at the present time t0. Using eq. (5.7) and eq. (5.11)

we finally get:

f1 '
√
H0MPl e

ϕ1/4 (Ωγ(t0))
1/4

(
Teff

Ms

)(1−δ)(3+
√

3)/4

, (5.16)

fs ' f1

(
Teff

Ms

)δ−1

. (5.17)

Note that, if we choose Teff = 1015 GeV, corresponding to a relatively short dual-dilaton

phase, and we fix δ = −0.3 in order to have an almost flat axion spectrum in the low-

frequency region (see Fig. 3), we get f1 ∼ 105 Hz, fs ∼ 109 Hz and ϕs ' −23, ϕ1 ' −11.
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Figure 3: Spectral slopes for fluctuations that re-enter in the radiation phase. For comparison

we also show the experimental constraint from COBE [20]: n+ 1 = 1.2 ± 0.3.

Therefore, the value of the dilaton at the beginning of the radiation era is still far from

the present value (ϕ0 ∼ −1).

Typical spectra for all the fields we have considered are shown in Fig 4. In particular,

for axionic fluctuations that re-enter in the dual-dilaton phase (f1 � f � fs), we get a

decreasing spectrum

ΩA ' G(η1)H
2
1 Ωγ(t0)

(
f

fs

)nA (fs
f1

)4

. (5.18)

On the contrary, for fluctuations that re-enter in the radiation phase (f � f1 � fs),

we get

ΩA ' G(η1)H
2
1 Ωγ(t0)

(
f

f1

)nA (fs
f1

)2(ν+µ)

, (5.19)

' Ωγ(t0)

(
f

f1

)nA
, (5.20)

which includes the possibility of a scale-invariant flat spectrum.

As can be seen from Fig. 4, the Kaluza-Klein “photons” V a
µ , can give sufficiently large

seeds for galactic magnetic fields (Ω > 10−38 for fM ≈ 10−14 Hz [21]) in this case, provided

of course that the true electromagnetic field has a non-vanishing component along this

direction in group space. Amusingly enough, this can be achieved in a range of moduli

where axionic perturbations have a nearly flat spectrum.

5.2 Intermediate string phase

In this scenario the Bogoliubov coefficients are still expressed by Eqs. (4.13), (4.14), (4.15)

and (4.16), ηs is the time at which the string phase starts, and we again assume that the
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Figure 4: Spectrum for all the fluctuations considered in the case of a dual-dilaton intermediate

phase, with the following choice: δ = −0.3, θ = 1/
√

3, f1 ∼ 105 Hz, fs ∼ 109 Hz, ϕs ∼

−23, ϕ1 ∼ −11, Teff = 1015 GeV.

radiation phase, dominated by the energy stored in the amplified vacuum fluctuations,

begins at η = η1. We recall that, in this case, f1 > fs and that we expect f1(η1) ∼ Ms.

Since axions have the most negative spectral slope, we impose again that their energy

density becomes critical at the beginning of the radiation phase:

H2
1 = G(η1) ρA(η1) . (5.21)

Using then

ρA(η1) ' f 4
1 (η1)

(
fs
f1

)nA
, (5.22)

and assuming again that the photons we observe today originate from the amplified

vacuum fluctuations, we can fix the present value of f1 to be

f1(t0) '
√
H0MPl e

ϕ1/4 (Ωγ(t0))
1/4 , (5.23)

and relate ϕ1 to the duration of the string phase zs = a1/as (a free parameter):

eϕ1 ' z−2ζ
s . (5.24)

If we define again

ρA(η1) ' T 4
eff , (5.25)

we obtain

zs '
(
Teff

Ms

)2/ζ

. (5.26)
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Figure 5: Some fluctuation spectra in the case of a string intermediate phase. The following

choice of parameters was made: ζ = 0.08, δ = −1/3, f1 ∼ 1010 Hz, fs ∼ 8 · 10−1 Hz, ϕs ∼

−8, ϕ1 ∼ −5, Teff = 2× 1018 GeV.

With the choice Teff = 2× 1018 GeV, ζ = 0.08, corresponding to a very long string phase,

and fixing δ = −1/3 in order to have a flat axion spectrum in the low-frequency region

(see Fig. 3), we obtain

f1 ∼ 1010 Hz, fs ∼ 8 · 10−1 Hz , ϕs ' −8, ϕ1 ' −5 .

As in the scenario with a dual-dilaton intermediate phase, we find the unpleasant result

that the dilaton is still far from its present value at the beginning of the radiation era.

In Fig.5 we summarize the results of the spectra for some perturbations. The spectrum

of the fluctuations that exit in the dilaton phase is given in the limit f � fs � f1, using

the coefficients Ci, shown in Table 1. For fluctuations that exit in the string phase we

consider instead the limit fs � f � f1, and the Bogoliubov coefficients are expressed by

the quantities Di (see Table 2 after substituting γ → κ and κ→ α).

Note that, for fluctuations of the axion field that exit in the string phase, we have:

ΩA ' G(η1)H
2
1 Ωγ(t0)

(
f

fs

)nA (f1

fs

)2(µ+ρ)−4

,

' Ωγ(t0)

(
f

fs

)nA
. (5.27)

Substituting the parameters of Table 1 we get a decreasing spectrum:

ΩA ' G(η1)H
2
1 Ωγ(t0)

(
f

f1

)−2ζ

. (5.28)

In this example, a long string phase produces a gravitational spectrum of order ∼ 10−9

in the range of detection of LIGO/VIRGO, but a very steep spectrum of Kaluza-Klein
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photons V a
µ at high frequencies and consequently a value of perturbations at fM ∼

10−14 Hz far below the lower limit necessary to seed the dynamo mechanism for galactic

magnetic fields [21].

6 Discussion

Our main results can be summarised as follows: Eqs. (4.28), (4.29), Tables 3 and 4,

Figs. 1, 2 and 3 give our main conclusions concerning the spectral slopes of the various

spectra in the two scenarios, while Figs. 4 and 5 illustrate the spectra of all perturbations

for certain typical choices of the background’s moduli. Rather than discussing the fine

details, we would like to draw some conclusions, which appear to be relatively robust with

respect to (slight?) variations of the moduli.

Our calculations are based on the use of the low-energy effective action both for

the backgrounds and for the perturbations. Since in the pre-big bang scenario a high-

curvature phase is necessary before any exit to standard cosmology can be achieved, such

a procedure is often criticized (see e.g. [23]) and requires some justification. We have seen

in our explicit computations that the spectrum of long-wavelength perturbations, which

exit and re-enter at small curvatures (in string units), does not depend on the details of the

high curvature phase (for a general analysis of graviton spectra, see e.g. [12]). Also, the use

of higher-derivative-corrected perturbation equations has recently been shown [24] not to

change the low-frequency spectra by more than a number O(1). Thus predictions for the

low-energy end of the spectra appear to be robust. Why? The physical explanation almost

certainly lies in the freezing-out of super-horizon-scale perturbations. The occurrence of

a constant mode at sufficiently large wavelengths can be shown without reference to the

low-energy approximation [18] and, by a canonical transformation argument, should also

apply to the constant-momentum mode. By contrast, the high frequency spectra are

expected to depend quite crucially on the details of the strong curvature transition. We

expect our naive formulae to give “lower bounds” for those parts of the spectra.

The main result of our investigation is the confirmation of the suggestion found in

ref.[17] that positive spectral slopes are by no means a must in pre-big bang cosmology.

By computing the spectra after re-entry, we have confirmed that axions do have, more

often than not, negative slopes (decreasing spectra). However, other fields, such as KK

gauge fields and scalars, can also exhibit negative slopes. A particularly promising case is

the one shown in Fig. 3, since, in a region around the one with nine-dimensional symmetry

(δ = ±βa = −1/3), the axion spectrum and that of a KK scalar field are nearly flat,

while the slope of the spectrum of some KK gauge field is positive but sufficiently small

to produce large enough seeds for the galactic magnetic fields.

Unfortunately, the promising results of Fig. 3 are somewhat spoiled when a long dual-

dilaton or string phase is inserted in the background between the dilaton and radiation

phases. In this case, the spectral slopes grow somewhat wild in the negative direction

(see e.g. Fig. 2 for the dual-dilaton case), making some of the spectra peak at very
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low frequency. The generic consequence of this phenomenon is a huge increase in the

total, integrated energy density in the perturbations. If the string coupling (the dilaton)

is not very small throughout the intermediate phase, the energy in these perturbations

soon becomes critical and the intermediate phase stops. The only way to have a long

intermediate phase is therefore to force the dilaton to be very perturbative until the end

of the intermediate phase, be it the string or the dual-dilaton phase. In this case, however,

at the beginning of the radiation phase the dilaton is still very much displaced from its

present value (where supposedly the minimum of its non-perturbative potential is) and

may have a hard time reaching it later. In other words, the most appealing possible

scenarios appear to be those with a sudden transition between the dilaton and radiation

phases occurring at “realistic” values for the string coupling (roughly 1/N , if N is the

number of effectively amplified distinct species). Although this appears at present as

some kind of fine tuning of the ratio of two moduli, it is not excluded that a better

understanding of the initial conditions leading to PBB behaviour along the lines of Ref.

[8] may tie together the initial values of the coupling and the curvature so that such

conditions are naturally realised.

If the latter picture is adopted it is possible to have a nearly scale-invariant dila-

ton/moduli spectrum. This could lead to an interesting mechanism to generate large-

scale anisotropy along the lines given in Ref.[16]. In the same region of moduli space one

obtains reasonably large fluctuations of the KK gauge fields to provide sizeable seeds for

the galactic magnetic fields. On the negative side, in this region of parameter space, the

situation would be quite discouraging for generating a large enough gravitational-wave

signal in the interesting frequency range.

Note added

While completing this work we became aware of a paper by Brustein and Hadad [25] which

is also dealing with generic perturbations in string cosmology. Their method is somewhat

different from ours: instead of working within a specific parametrization of the high-

curvature phase, they have assumed the freezing of the fluctuation and of its conjugate

momentum for super-horizon scales. Also, they have not imposed our criticality condition

and thus have not obtained predictions on the value of the dilaton at the beginning of

the radiation phase. We have checked that our results agree with theirs wherever a

comparison is possible.
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A Appendix

Here we give the explicit form of the coefficients entering the Bogoliubov formulae of

Sec. 4.3. In the case of the limit f � f1 � fs we get:

N1 =
i

8π

Γ(µ) Γ(ν) Γ(ρ)

Γ(1 + µ)
,

C1
1 = (γ − κ+ µ+ ν) (−α + κ+ µ− ρ) ,

C2
1 = (γ − κ− µ+ ν) (α− κ+ µ+ ρ) ;

N2 = −
i

8π

Γ(µ) Γ(ν) Γ(−ρ)

Γ(1 + µ)
[cos(π ρ)− i sin(π ρ)] ,

C1
2 = (γ − κ+ µ+ ν) (α− κ− µ− ρ) ,

C2
2 = (γ − κ− µ+ ν) (−α + κ− µ+ ρ) ;

N3 = −
i

8π

Γ(µ) Γ(−ν) Γ(ρ)

Γ(1 + µ)
[cos(π ν)− i sin(π ν)] ,

C1
3 = (γ − κ+ µ− ν) (α− κ− µ+ ρ) ,

C2
3 = (−γ + κ+ µ+ ν) (α− κ+ µ+ ρ) ;

N4 = −
i

8π

Γ(µ) Γ(ν) Γ(ρ)

Γ(2− µ) Γ(1 + µ) Γ(2 + µ) Γ(2− ν) Γ(2− ρ)
,

C1
4 = (α− κ+ µ+ ρ) Γ(2 + µ) Γ(2− ρ) [(−2 + γ − κ− µ+ ν)

Γ(2− µ) Γ(1− ν) + (2 + γ − κ− µ+ ν) Γ(1− µ) Γ(2− ν)] ,

C2
4 = (−α + κ+ µ− ρ) Γ(2− µ) Γ(2− ρ) [(−2 + γ − κ+ µ+ ν)

Γ(2 + µ) Γ(1− ν) + (2 + γ − κ+ µ+ ν) Γ(1 + µ) Γ(2− ν)] ,

C3
4 = (γ − κ+ µ+ ν) Γ(2 + µ) Γ(2− ν) [(2− α + κ+ µ− ρ)

Γ(2− µ) Γ(1− ρ) + (−2− α + κ+ µ− ρ) Γ(1− µ) Γ(2− ρ)] ,

C4
4 = (γ − κ− µ+ ν) Γ(2− µ) Γ(2− ν) [(−2 + α− κ+ µ+ ρ)

Γ(2 + µ) Γ(1− ρ) + (2 + α− κ+ µ+ ρ) Γ(1 + µ) Γ(2− ρ)] ;

while for fluctuations in the frequency region f1 � f � fs we obtain:

D1 = −
i

8
e−iπ/2 (−µ+ρ) (−γ + κ + µ− ν) π−1 2Γ(µ) Γ(ν) ,

D2 = −
i

8
e−iπ/2 (µ+ρ) (−γ + κ− µ− ν) π−1 2Γ(−µ) Γ(ν) ,

D3 = −
i

8
e−iπ/2 (2ν−µ+ρ) (−γ + κ+ µ+ ν) π−1 2Γ(µ) Γ(−ν) ,

D4 =
i

8
e−iπ/2 (−µ+ρ) π [(2− γ + κ + µ− ν) (1− µ) +

(−2− γ + κ+ µ− ν) (1− ν)]
2Γ(µ) Γ(ν)

(1− µ) (1− ν)
.
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