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Abstract

We present a class of static, spherically symmetric, non-singular solutions of the tree-level

string effective action, truncated to first order in α′. In the string frame the solutions

approach asymptotically (at r → 0 and r → ∞) two different anti-de Sitter configurations,

thus interpolating between two maximally symmetric states of different constant curvature.

The radial-dependent dilaton defines a string coupling which is everywhere finite, with a

peak value that can be chosen arbitrarily small so as to neglect quantum-loop corrections.

This example stresses the possible importance of finite-size α′ corrections, typical of string

theory, in avoiding space-time singularities.
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It has often been conjectured, soon after the appearance of the first paper [1] discussing

string corrections to the Schwarzschild metric, that the higher-derivative terms (the so-

called α′ corrections), appearing at next-to-leading order in the string effective action, should

regularize the curvature singularity present at the origin in the Schwarzschild solution [2, 3].

It has been shown, in particular, that the singularity may indeed disappear when the delta-

function of the effective point-like source, supporting the solution at the origin, is smeared

out by the effect of α′ corrections [4].

To support the expected “smoothing” of short-distance divergences, due to the funda-

mental cut-off scale of string theory, we will discuss in this paper static and spherically

symmetric solutions of the string effective action in vacuum, with no sources (nor cosmolog-

ical term) included in the action, but with higher-derivative terms included up to first order

in α′

In general relativity it is well known that all non-trivial spherically symmetric solutions

in vacuum are singular at the origin, and that the only solution that is regular everywhere is

the trivial Minkowski manifold. For the lowest order string effective action all the non-trivial

solutions are also singular. In this paper we will show that, when we add higher-derivative

corrections to first order in α′, the action admit instead non-trivial solutions in which the

curvature is bounded everywhere, and asymptotically approaches two constant finite values

at r → 0 and r→∞.

We shall work in the string frame, where the gravi-dilaton effective action of critical string

theory, at tree level in the string-loop expansion but including first-order α′ corrections, can

be written in the form [5]:

S =
∫
d4x
√
−ge−φ

[
−R − (∇φ)2 +

kα′

4

(
R2
GB − (∇φ)4

)]
. (1)

Here φ is the dilaton field, R2
GB ≡ R2

µναβ − 4R2
µν + R2 is the Gauss–Bonnet invariant, and

k = 1, 1/2 for the bosonic and heterotic string, respectively (conventions: gµν = (+ −

−−), Rµνα
β = ∂µΓνα

β − ..., and Rνα = Rµνα
µ). Note that the particular field redefinition

that we have chosen eliminates higher-than-second derivatives from the field equations, but

necessarily introduces dilaton-dependent α′ corrections in the effective action (the Gauss–

Bonnet term, by itself, may represent the complete first-order α′ corrections only in the

conformally related Einstein frame [5]).
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Looking for static and spherically symmetric solutions, parametrized by

ds2 = eνdt2 − eλdr2 −R2
(
dθ2 + sin2 θdϕ2

)
,

ν = ν(r), λ = λ(r), R = R(r), φ = φ(r), (2)

the effective action (after integration by parts) can be rewritten as:

S = 4π
∫
dre

ν
2
−λ

2
−φ
[
R2φ′2 −R2ν′φ′ − 4RR′φ′ + 2R′2 + 2RR′ν′ + 2eλ+

+kα′ν′φ′
(
e−λR′2 − 1

)
− k

α′

4
e−λR2φ′4

]
(3)

(a prime denotes differentiation with respect to r). By varying λ, ν,R and φ, and imposing

the radial gauge R = r, we obtain respectively the equations (we put k = 1 for simplicity)

−
1

2
L+ 2eλ − α′ν′φ′e−λ +

α′

4
r2φ′4e−λ = 0, (4)[

φ′′ +

(
ν′

2
−
λ′

2
− φ′

)
φ′
] [
−r2 + α′

(
e−λ − 1

)]
+

+2r

(
ν′

2
−
λ′

2
− φ′

)
− φ′

(
2r + α′λ′e−λ

)
+ 2−

L

2
= 0, (5)

2rν′′ + 2α′e−λ (ν′′φ′ + ν′φ′′ − ν′φ′λ′)− 2r
(
φ′2 − ν′φ′

)
+(

ν′

2
−
λ′

2
− φ′

)(
−4rφ′ + 4 + 2rν′ + 2α′ν′φ′e−λ

)
− 4rφ′′ +

α′

2
rφ′4e−λ = 0, (6)

4rφ′ + 2r2φ′′ − 4− ν′
(
2r + α′λ′e−λ

)
+ ν′′

[
−r2 + α′

(
e−λ − 1

)]
−α′e−λ

(
−λ′r2φ′3 + 2rφ′3 + 3r2φ′2φ′′

)
+ L+(

ν′

2
−
λ′

2
− φ′

) [
r2 (2φ′ − ν′)− 4r + α′ν′

(
e−λ − 1

)
− α′r2φ′3e−λ

]
= 0, (7)

where

L(r) = r2φ′2 − φ′
(
r2ν′ + 4r

)
+ 2 + 2rν′ + 2eλ + α′ν′φ′

(
e−λ − 1

)
−
α′

4
r2φ′4e−λ. (8)

Of these four equations, only three are independent. The first one, following from the

variation of λ, does not contain second derivatives and can be used as a constraint on the

initial conditions.

For φ = const and α′ = 0 the only non-trivial solution of the above system is the well

known singular Schwarzschild metric, eν = e−λ = 1− 2m/r. For φ′ 6= 0 and α′ 6= 0, on the
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contrary, there are non-trivial solutions with no curvature singularities at the origin. We can

easily check that the above equations are indeed satisfied, at r = 0, by

λ(0) = 0, λ′(0) = 0, ν′(0) = 0, ν′′(0) = 2/α′, φ′(0) = const 6= 0, (9)

corresponding to a non-zero but finite value of the curvature invariants at the origin. By

using the Taylor expansion, and imposing the initial conditions (9), we then find a class of

solutions that around r = 0 are approximated by

φ = φ(0) + rφ′(0) +
r2

2
φ′′(0) +O(r3),

ν = ν(0) +
r2

α′
+O(r3), λ = −

r2

α′
+O(r3) (10)

where φ(0) and ν(0) are left arbitrary, while φ′ and φ′′ are determined by the field equations

as (in units α′ = 1):

φ′(0) = −1.414..., φ′′(0) = −0.4166... (11)

(there is also a non-trivial solution with φ′(0) > 0, but in that case the singularity appears

at a finite distance from the origin).

It is interesting to note that, for small enough r, the metric part of the solution (10)

approximates an anti-de Sitter background with

e−λ = 1 + Λr2, eν = eν0

(
1 + Λr2

)
, (12)

and cosmological parameter Λ = 1/α′ (the constant ν0 = ν(0) can be absorbed by rescaling

the time coordinate). Such a metric parametrizes a maximally symmetric manifold, whose

constant curvature invariants are determined by Λ as

R2
µναβ = 24Λ2, R2

µν = 36Λ2, R2 = 144Λ2. (13)

The computation of the Ricci tensor around the origin, for the approximated solution (10),

gives in fact Rν
µ(0) = (3/α′)δνµ, in agreement with eq. (13) for Λ = 1/α′.

In the opposite limit r → ∞, the equations of motion (4)–(7) are again asymptotically

satisfied by a maximally symmetric anti-de Sitter manifold, but with a different value of the

effective cosmological constant. By setting

φ = φ∞ − γ log r, ν = ν∞ + 2 log r, λ = − log Λ− 2 log r (14)
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(where ν and λ approximate the metric (12) for Λr � 1), the field equations (4)–(7) are in

fact reduced, for r→∞, to a system of four algebraic equations:

−3− 3γ −
1

2
γ2 + 3α′Λγ +

3

8
α′Λγ4 = 0, (15)

3 + 2γ +
1

2
γ2 − 2α′Λγ − α′Λγ2 +

1

8
α′Λγ4 = 0, (16)

12 + 8γ + 2γ2 − 8α′Λγ − 4α′Λγ2 +
1

2
α′Λγ4 = 0, (17)

−12 + 6α′Λ− 6γ − γ2 + 3α′Λγ3 +
3

4
α′Λγ4 = 0, (18)

which are not, of course, all independent (the left-hand side of eqs. (16) and (17) are

indeed proportional), and which provide non-trivial solutions for the two unknown Λ and

γ. Discarding negative values of γ, since we are looking for configurations with decreasing

dilaton, we are then left with two possible pairs of real solutions:

α′Λ = 1.820..., γ = 1.079...,

α′Λ = 2.194..., γ = 0.8258... . (19)

In the limit r → ∞ the solution (14) satisfies the condition of maximally symmetric

manifold (eq. (13)), with the asympotic value of the curvature fixed by the numerical values

(19). The two constant parameters of the solution, φ∞ and ν∞, can be chosen so as to

continuously match this anti-de Sitter configuration to the other one approaching the origin.

A possible example of a solution that is everywhere regular (with no event horizons) and

smoothly interpolates between the two asymptotic states of constant curvature, has beeen

obtained by integrating numerically eqs. (4)–(7), and is illustrated by the following four

figures (plotted for α′ = 1).

In Fig. 1 we show the logarithmic derivative of the time and radial components of the

metric tensor, which display the typical anti-de Sitter behaviour of eq. (12), ν′ = −λ′ =

2Λr/(1+Λr2), with the only difference that the effective cosmological parameter Λ is slightly

different in the two regimes r�
√
α′ and r �

√
α′.

In Fig. 2 we show that the string coupling gs = eφ/2 is decreasing for r →∞, and that

its first and second derivatives are everywhere bounded. The normalization of φ at r = 0 is

fixed by an arbitrary integration constant; it can always be chosen in such a way that gs < 1

everywhere. The figure corresponds to the particular case φ(0) = −1.
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Figure 1: Radial behaviour of the logarithmic derivatives of the metric tensor.
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Figure 2: Radial behaviour of the string coupling gs = eφ/2, and of the derivatives of the

dilaton field.
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Figure 3: Radial behaviour of the curvature invariants.

In Fig. 3 we plot the curvature invariants R2
µναβ , R2

µν and R2. Their radial dependence

interpolates between the constant values determined, according to eq. (13), by an effective

cosmological term Λ = 1/α′ at r → 0 and Λ = 1.82/α′ at r →∞ (the latter corresponding

to the first solution of eq. (19)).

In Fig. 4 we show that the ratios R2
µναβ/R

2 and R2
µν/R

2 approach, asymptotically, the

constant values 1/6 = 0.166 and 1/4 = 0.25 respectively, which are typical of maximally

symmetric manifolds according to eq. (13).

In conclusion, a few comments are in order. This class of backgrounds is certainly in-

teresting as a class of regular solutions of a higher-derivative model of gravity. For what

concerns string theory, however, it is presently unclear whether such solutions can be ex-

tended to all orders in α′, to represent a non-trivial zero of the corresponding sigma-model

β-functions. The truncation of the action is indeed unmotivated in a string theory context,

when the background reaches curvature scales of order one in string units, like in the ex-

ample studied in this paper. Also, as discussed in the cosmological case [6], the existence

of solutions that are everywhere regular may be a property that depends on the particular

field redefinition adopted, until the α′ expansion of the string effective action is truncated
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Figure 4: Radial interpolation between the two asymptotic anti-de Sitter configurations.

at a given finite order. This ambiguity can only be resolved by a solution corresponding to

a true conformal field theory, exact to all orders in α′. The investigation of this aspect of

the problem is postponed to future works.

Nevertheless, the existence of regular solutions in the perturbative regime of the quantum-

loop expansion (gs � 1), seems to support the expectation that space-time singularities may

be regularized, already at a “classical” level, by the finite-size “stringy” α′ corrections.

It is important to stress, finally, that constant curvature configurations may generally

appear, asymptotically, when higher-derivative terms are added to a lowest-order action.

Such configurations, however, are in general disconnected from the origin by one (or more)

curvature singularities, appearing at finite values of r. By contrast, for the action (1) in which

the higher-derivative corrections appear precisely in the form dictated by string theory, the

regular asymptotic regimes can be smoothly connected, and there are solutions in which the

curvature is everywhere bounded. In this sense the action (1) automatically implements the

“limiting-curvature” hypothesis [7], often invoked to regularize space-time singularities.
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