177 research outputs found

    Dislocation density and graphitization of diamond crystals

    Get PDF
    Two sets of diamond specimens compressed at 2 GPa at temperatures varying between 1060 K and 1760 K were prepared; one in which graphitization was promoted by the presence of water and another in which graphitization of diamond was practically absent. X-ray diffraction peak profiles of both sets were analyzed for the microstructure by using the modified Williamson-Hall method and by fitting the Fourier coefficients of the measured profiles by theoretical functions for crystallite size and lattice strain. The procedures determined mean size and size distribution of crystallites as well as the density and the character of the dislocations. The same experimental conditions resulted in different microstructures for the two sets of samples. They were explained in terms of hydrostatic conditions present in the graphitized samples

    X-ray diffraction study of crystallite size-distribution and strain in carbon blacks

    Get PDF
    The crystallite size and size-distribution in the presence of strain is determined in carbon blacks by a recently developed procedure of X-ray diffraction peak profile analysis. The Fourier coefficients of the measured physical profiles are fitted by Fourier coefficients of well established ab initio functions of size and strain peak profiles. Strain anisotropy is accounted for by the dislocation model of the mean square strain in terms of average dislocation contrast factors. Crystallite shape anisotropy is modelled by ellipsoids incorporated into the size profile function. The Fourier transforme of the size profile is given as an explicite formula making the fitting procedure fast. The method is applied to carbon balcks terated at different preassures and temperatures. The microstructure is characterised in terms of crystallite size-distribution, dislocation density and crystallite shape anisotropy

    Microstructure and strength of metals processed by severe plastic deformation

    Get PDF
    The microstructure of f.c.c. metals (Al, Cu, Ni) and alloys (Al-Mg) processed by severe plastic deformation (SPD) methods is studied by X-ray diffraction line profile analysis. It is shown that the crystallite size and the dislocation density saturate with increasing strain. Furthermore, the Mg addition promotes efficiently a reduction of the crystallite size and an increase of the dislocation density in Al during the SPD process. The yield strength correlates well with that calculated from the dislocation density using the Taylor equation, thereby indicating that the main strengthening mechanism in both pure metals and alloys is the interaction between dislocations

    Properties of nanostructured diamond-silicon carbide composites sintered by high pressure infiltration technique

    Get PDF
    A high-pressure silicon infiltration technique was applied to sinter diamond–SiC composites with different diamond crystal sizes. Composite samples were sintered at pressure 8 GPa and temperature 2170 K. The structure of composites was studied by evaluating x-ray diffraction peak profiles using Fourier coefficients of ab initio theoretical size and strain profiles. The composite samples have pronounced nanocrystalline structure: the volume-weighted mean crystallite size is 41–106 nm for the diamond phase and 17–37 nm for the SiC phase. The decrease of diamond crystal size leads to increased dislocation density in the diamond phase, lowers average crystallite sizes in both phases, decreases composite hardness, and improves fracture toughness

    Influence of sintering temperature and pressure on crystallite size and lattice defect structure in nanocrystalline SiC

    Get PDF
    Microstructure of sintered nanocrystalline SiC is studied by x-ray line profile analysis and transmission electron microscopy. The lattice defect structure and the crystallite size are determined as a function of pressure between 2 and 5.5 GPa for different sintering temperatures in the range from 1400 to 1800 degrees C. At a constant sintering temperature, the increase of pressure promotes crystallite growth. At 1800 degrees C when the pressure reaches 8 GPa, the increase of the crystallite size is impeded. The grain growth during sintering is accompanied by a decrease in the population of planar faults and an increase in the density of dislocations. A critical crystallite size above which dislocations are more abundant than planar defects is suggested

    Properties of nanostructured diamond-silicon carbide composites sintered by high pressure infiltration technique

    Get PDF
    A high-pressure silicon infiltration technique was applied to sinter diamond–SiC composites with different diamond crystal sizes. Composite samples were sintered at pressure 8 GPa and temperature 2170 K. The structure of composites was studied by evaluating x-ray diffraction peak profiles using Fourier coefficients of ab initio theoretical size and strain profiles. The composite samples have pronounced nanocrystalline structure: the volume-weighted mean crystallite size is 41–106 nm for the diamond phase and 17–37 nm for the SiC phase. The decrease of diamond crystal size leads to increased dislocation density in the diamond phase, lowers average crystallite sizes in both phases, decreases composite hardness, and improves fracture toughness

    Phase transition in nanomagnetite

    Get PDF
    Recently, the application of nanosized magnetite particles became an area of growing interest for their potential practical applications. Nanosized magnetite samples of 36 and 9 nm sizes were synthesized. Special care was taken on the right stoichiometry of the magnetite particles. Mössbauer spectroscopy measurements were made in 4.2–300 K temperature range. The temperature dependence of the intensities of the spectral components indicated size dependent transition taking place in a broad temperature range. For nanosized samples, the hyperfine interaction values and their relative intensities changed above the Verwey transition temperature value of bulk megnetite. The continuous transition indicated the formation of dendritelike granular assemblies formed during the preparation of the samples

    Microstructure of nanocrystalline diamond powders studied by powder diffractometry

    Get PDF
    High resolution x-ray diffraction peaks of diamond nanosize powders of nominal sizes ranging from 5 to 250 nm were analyzed and provided information on grain structure, average size of crystallites, and concentration of dislocations. Selected samples were heat treated at 1670 K at pressures 2.0 and 5.5 GPa or had surface modified by outgassing, heat treatment at vacuum conditions, and by controlled adsorption of gases. The apparent lattice parameter method was applied to characterize the structure of a shell-core model of nanosize particles. The multiple whole profile fitting provided information on crystallite sizes and density of dislocations. Population of dislocations increased with applied pressure, while strain and interplanar distances in the surface layers decreased. Adsorption of foreign gases on the grain surface modified the structure of the surface layers but did not affect dislocations near the center of the grains

    Nanostructures in Ti processed by severe plastic deformation

    Get PDF
    Metals and alloys processed by severe plastic deformation (SPD) can demonstrate superior mechanical properties, which are rendered by their unique defect structures. In this investigation, transmission electron microscopy and x-ray analysis were used to systematically study the defect structures, including grain and subgrain structures, dislocation cells, dislocation distributions, grain boundaries, and the hierarchy of these structural features, in nanostructured Ti produced by a two-step SPD procedure-warm equal channel angular pressing followed by cold rolling. The effects of these defect structures on the mechanical behaviors of nanostructured Ti are discussed
    corecore