6,724 research outputs found

    A narrative review of the pharmacological, cultural and psychological literature on ibogaine

    Get PDF
    Abstract Ibogaine is a psychoactive alkaloid contained in the West African plant Tabernanthe iboga. Although preliminary, evidence suggests that ibogaine could be effective in the treatment of certain substance use disorders, specifically opioid use disorder. This narrative review concentrated on the pharmacological, cultural and psychological aspects of ibogaine that contribute to its reputed effectiveness with a specific focus on the ibogaine state of consciousness. Although the exact pharmacological mechanisms for ibogaine are still speculative, the literature highlighted its role as an NMDA antagonist in the effective treatment of substance use disorders. The cultural aspects associated with the use of ibogaine pose questions around the worldview of participants as experienced in the traditional and western contexts, which future research should clarify. From a psychological perspective, the theory that the ibogaine state of consciousness resembles REM sleep is questionable due to evidence that indicated ibogaine supressed REM sleep, and contradictory evidence in relation to learning and memory. The suggested classification of the ibogaine experience as oneirophrenic also seems inadequate as it only describes the first phase of the ibogaine experience. The ibogaine experience does however present characteristics consistent with holotropic states of consciousness, and future research could focus on exploring and potentially classifying the state of consciousness induced by ibogaine as holotropic

    Universal quantum computation by discontinuous quantum walk

    Full text link
    Quantum walks are the quantum-mechanical analog of random walks, in which a quantum `walker' evolves between initial and final states by traversing the edges of a graph, either in discrete steps from node to node or via continuous evolution under the Hamiltonian furnished by the adjacency matrix of the graph. We present a hybrid scheme for universal quantum computation in which a quantum walker takes discrete steps of continuous evolution. This `discontinuous' quantum walk employs perfect quantum state transfer between two nodes of specific subgraphs chosen to implement a universal gate set, thereby ensuring unitary evolution without requiring the introduction of an ancillary coin space. The run time is linear in the number of simulated qubits and gates. The scheme allows multiple runs of the algorithm to be executed almost simultaneously by starting walkers one timestep apart.Comment: 7 pages, revte

    Atmospheric circulation patterns, cloud-to-ground lightning, and locally intense convective rainfall associated with debris flow initiation in the Dolomite Alps of northeastern Italy

    Get PDF
    The Dolomite Alps of northeastern Italy experience debris flows with great frequency during the summer months. An ample supply of unconsolidated material on steep slopes and a summer season climate regime characterized by recurrent thunderstorms combine to produce an abundance of these destructive hydro-geologic events. In the past, debris flow events have been studied primarily in the context of their geologic and geomorphic characteristics. The atmospheric contribution to these mass-wasting events has been limited to recording rainfall and developing intensity thresholds for debris mobilization. This study aims to expand the examination of atmospheric processes that preceded both locally intense convective rainfall (LICR) and debris flows in the Dolomite region. 500 hPa pressure level plots of geopotential heights were constructed for a period of 3 days prior to debris flow events to gain insight into the synoptic-scale processes which provide an environment conducive to LICR in the Dolomites. Cloud-to-ground (CG) lightning flash data recorded at the meso-scale were incorporated to assess the convective environment proximal to debris flow source regions. Twelve events were analyzed and from this analysis three common synoptic-scale circulation patterns were identified. Evaluation of CG flashes at smaller spatial and temporal scales illustrated that convective processes vary in their production of CF flashes (total number) and the spatial distribution of flashes can also be quite different between events over longer periods. During the 60 min interval immediately preceding debris flow a majority of cases exhibited spatial and temporal colocation of LICR and CG flashes. Also a number of CG flash parameters were found to be significantly correlated to rainfall intensity prior to debris flow initiation

    Observations of the structure and evolution of solar flares with a soft X-ray telescope

    Get PDF
    Soft X ray flare events were observed with the S-056 X-ray telescope that was part of the ATM complement of instruments aboard SKYLAB. Analyses of these data are reported. The observations are summarized and a detailed discussion of the X-ray flare structures is presented. The data indicated that soft X-ray emitted by a flare come primarily from an intense well-defined core surrounded by a region of fainter, more diffuse emission. An analysis of flare evolution indicates evidence for preliminary heating and energy release prior to the main phase of the flare. Core features are found to be remarkably stable and retain their shape throughout a flare. Most changes in the overall configuration seem to be result of the appearance, disappearance or change in brightness of individual features, rather than the restructuring or reorientation of these features. Brief comparisons with several theories are presented

    A study of the grass tetany syndrome in Ohio

    Get PDF

    The emerging role of small RNAs in ovule development, a kind of magic

    Get PDF

    Whole home exercise intervention for depression in older care home residents (the OPERA study) : a process evaluation

    Get PDF
    Background: The ‘Older People’s Exercise intervention in Residential and nursing Accommodation’ (OPERA) cluster randomised trial evaluated the impact of training for care home staff together with twice-weekly, physiotherapist-led exercise classes on depressive symptoms in care home residents, but found no effect. We report a process evaluation exploring potential explanations for the lack of effect. Methods: The OPERA trial included over 1,000 residents in 78 care homes in the UK. We used a mixed methods approach including quantitative data collected from all homes. In eight case study homes, we carried out repeated periods of observation and interviews with residents, care staff and managers. At the end of the intervention, we held focus groups with OPERA research staff. We reported our first findings before the trial outcome was known. Results: Homes showed large variations in activity at baseline and throughout the trial. Overall attendance rate at the group exercise sessions was low (50%). We considered two issues that might explain the negative outcome: whether the intervention changed the culture of the homes, and whether the residents engaged with the intervention. We found low levels of staff training, few home champions for the intervention and a culture that prioritised protecting residents from harm over encouraging activity. The trial team delivered 3,191 exercise groups but only 36% of participants attended at least 1 group per week and depressed residents attended significantly fewer groups than those who were not depressed. Residents were very frail and therefore most groups only included seated exercises. Conclusions: The intervention did not change the culture of the homes and, in the case study homes, activity levels did not change outside the exercise groups. Residents did not engage in the exercise groups at a sufficient level, and this was particularly true for those with depressive symptoms at baseline. The physical and mental frailty of care home residents may make it impossible to deliver a sufficiently intense exercise intervention to impact on depressive symptoms

    Development of an interatomic potential for the simulation of defects, plasticity, and phase transformations in titanium

    Get PDF
    New interatomic potentials describing defects, plasticity, and high temperature phase transitions for Ti are presented. Fitting the martensitic hcp-bcc phase transformation temperature requires an efficient and accurate method to determine it. We apply a molecular dynamics method based on determination of the melting temperature of competing solid phases, and Gibbs-Helmholtz integration, and a lattice-switch Monte Carlo method: these agree on the hcp-bcc transformation temperatures to within 2 K. We were able to develop embedded atom potentials which give a good fit to either low or high temperature data, but not both. The first developed potential (Ti1) reproduces the hcp-bcc transformation and melting temperatures and is suitable for the simulation of phase transitions and bcc Ti. Two other potentials (Ti2 and Ti3) correctly describe defect properties and can be used to simulate plasticity or radiation damage in hcp Ti. The fact that a single embedded atom method potential cannot describe both low and high temperature phases may be attributed to neglect of electronic degrees of freedom, notably bcc has a much higher electronic entropy. A temperature-dependent potential obtained from the combination of potentials Ti1 and Ti2 may be used to simulate Ti properties at any temperature.</p

    Single-qubit unitary gates by graph scattering

    Full text link
    We consider the effects of plane-wave states scattering off finite graphs, as an approach to implementing single-qubit unitary operations within the continuous-time quantum walk framework of universal quantum computation. Four semi-infinite tails are attached at arbitrary points of a given graph, representing the input and output registers of a single qubit. For a range of momentum eigenstates, we enumerate all of the graphs with up to n=9n=9 vertices for which the scattering implements a single-qubit gate. As nn increases, the number of new unitary operations increases exponentially, and for n>6n>6 the majority correspond to rotations about axes distributed roughly uniformly across the Bloch sphere. Rotations by both rational and irrational multiples of π\pi are found.Comment: 8 pages, 7 figure
    corecore