1,272 research outputs found

    Cladding strategies for building-integrated photovoltaics

    Get PDF
    Photovoltaic cladding on the surfaces of commercial buildings has the potential for considerable reductions in carbon emissions due to embedded renewable power generation displacing conventional power utilization. In this paper, a model is described for the optimization of photovoltaic cladding densities on commercial building surfaces. The model uses a modified form of the ‘fill factor’ method for photovoltaic power supply coupled to new regression-based procedures for power demand estimation. An optimization is included based on a defined ‘mean index of satisfaction’ for matched power supply and demand (i.e., zero power exportation to the grid). The mean index of satisfaction directly translates to the reduction in carbon emission that might be expected over conventional power use. On clear days throughout the year, reductions of conventional power use of at least 60% can be achieved with an optimum cladding pattern targeted to lighting and small power load demands

    Biotic resistance to invasion along an estuarine gradient

    Get PDF
    Biotic resistance is the ability of native communities to repel the establishment of invasive species. Predation by native species may confer biotic resistance to communities, but the environmental context under which this form of biotic resistance occurs is not well understood. We evaluated several factors that influence the distribution of invasive Asian mussels (Musculista senhousia) in Mission Bay, a southern California estuary containing an extensive eelgrass (Zostera marina) habitat. Asian mussels exhibit a distinct spatial pattern of invasion, with extremely high densities towards the back of Mission Bay (up to 4,000 m−2) in contrast with near-complete absence at sites towards the front of the bay. We established that recruits arrived at sites where adult mussels were absent and found that dense eelgrass does not appear to preclude Asian mussel growth and survival. Mussel survival and growth were high in predator-exclusion plots throughout the bay, but mussel survival was low in the front of the bay when plots were open to predators. Additional experiments revealed that consumption by spiny lobsters (Panulirus interruptus) and a gastropod (Pteropurpura festiva) likely are the primary factors responsible for resistance to Asian mussel invasion. However, biotic resistance was dependent on location within the estuary (for both species) and also on the availability of a hard substratum (for P. festiva). Our findings indicate that biotic resistance in the form of predation may be conferred by higher order predators, but that the strength of resistance may strongly vary across estuarine gradients and depend on the nature of the locally available habitat

    Changes in undergraduate student alcohol consumption as they progress through university

    Get PDF
    BACKGROUND: Unhealthy alcohol use amongst university students is a major public health concern. Although previous studies suggest a raised level of consumption amongst the UK student population there is little consistent information available about the pattern of alcohol consumption as they progress through university. The aim of the current research was to describe drinking patterns of UK full-time undergraduate students as they progress through their degree course. METHOD: Data were collected over three years from 5895 undergraduate students who began their studies in either 2000 or 2001. Longitudinal data (i.e. Years 1–3) were available from 225 students. The remaining 5670 students all responded to at least one of the three surveys (Year 1 n = 2843; Year 2 n = 2219; Year 3 n = 1805). Results: Students reported consuming significantly more units of alcohol per week at Year 1 than at Years 2 or 3 of their degree. Male students reported a higher consumption of units of alcohol than their female peers. When alcohol intake was classified using the Royal College of Physicians guidelines [1] there was no difference between male and females students in terms of the percentage exceeding recommended limits. Compared to those who were low level consumers students who reported drinking above low levels at Year 1 had at least 10 times the odds of continuing to consume above low levels at year 3. Students who reported higher levels of drinking were more likely to report that alcohol had a negative impact on their studies, finances and physical health. Consistent with the reduction in units over time students reported lower levels of negative impact during Year 3 when compared to Year 1. CONCLUSION: The current findings suggest that student alcohol consumption declines over their undergraduate studies; however weekly levels of consumption at Year 3 remain high for a substantial number of students. The persistence of high levels of consumption in a large population of students suggests the need for effective preventative and treatment interventions for all year groups

    Responses of marine benthic microalgae to elevated CO<inf>2</inf>

    Get PDF
    Increasing anthropogenic CO2 emissions to the atmosphere are causing a rise in pCO2 concentrations in the ocean surface and lowering pH. To predict the effects of these changes, we need to improve our understanding of the responses of marine primary producers since these drive biogeochemical cycles and profoundly affect the structure and function of benthic habitats. The effects of increasing CO2 levels on the colonisation of artificial substrata by microalgal assemblages (periphyton) were examined across a CO2 gradient off the volcanic island of Vulcano (NE Sicily). We show that periphyton communities altered significantly as CO2 concentrations increased. CO2 enrichment caused significant increases in chlorophyll a concentrations and in diatom abundance although we did not detect any changes in cyanobacteria. SEM analysis revealed major shifts in diatom assemblage composition as CO2 levels increased. The responses of benthic microalgae to rising anthropogenic CO2 emissions are likely to have significant ecological ramifications for coastal systems. © 2011 Springer-Verlag

    Exercise therapy for chronic low back pain:protocol for an individual participant data meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Low back pain (LBP) is one of the leading causes of disability and has a major socioeconomic impact. Despite a large amount of research in the field, there remains uncertainty about the best treatment approach for chronic LBP, and identification of relevant patient subgroups is an important goal. Exercise therapy is a commonly used strategy to treat chronic low back pain and is one of several interventions that evidence suggests is moderately effective.</p> <p>In parallel with an update of the 2005 Cochrane review, we will undertake an individual participant data (IPD) meta-analysis, which will allow us to standardize analyses across studies and directly derive results, and to examine differential treatment effects across individuals to estimate how patients’ characteristics modify treatment benefit.</p> <p>Methods/design</p> <p>We will use standard systematic review methods advocated by the Cochrane Collaboration to identify relevant trials. We will include trials evaluating exercise therapy compared to any or no other interventions in adult non-specific chronic LBP. Our primary outcomes of interest include pain, functional status, and return-to-work/absenteeism. We will assess potential risk of bias for each study meeting selection criteria, using criteria and methods recommended by the Cochrane BRG.</p> <p>The original individual participant data will be requested from the authors of selected trials having moderate to low risk of bias. We will test original data and compile a master dataset with information about each trial mapped on a pre-specified framework, including reported characteristics of the study sample, exercise therapy characteristics, individual patient characteristics at baseline and all follow-up periods, subgroup and treatment effect modifiers investigated. Our analyses will include descriptive, study-level meta-analysis and meta-regression analyses of the overall treatment effect, and individual-level IPD meta-analyses of treatment effect modification. IPD meta-analyses will be conducted using a one-step approach where the IPD from all studies are modeled simultaneously while accounting for the clustering of participants with studies.</p> <p>Discussion</p> <p>We will analyze IPD across a large number of LBP trials. The resulting larger sample size and consistent presentation of data will allow additional analyses to explore patient-level heterogeneity in treatment outcomes and prognosis of chronic LBP.</p

    Blockchain and Organizational Characteristics : Towards Business Model Innovation

    Get PDF
    Blockchain seems to challenge the current business models by providing opportunities for new value creation. However, several research gaps remain in literature in evaluating how firms can leverage new approaches to innovation management and opportunities created by blockchain. Supporting organizational characteristics affecting digital innovation management process also need attention in order to challenge the traditional theories while developing unique fundamental assumptions between innovation processes and outcomes. Thus, blockchain and organizational characteristics need to be understood as an encompassing, overarching and interrelated ecosystem in digital innovation management. Grounding on digitalization and innovation management, this research conceptualizes how blockchain technology and supporting organizational characteristics (i.e., R&D investment, strategic alignment, cultural support, top management knowledge and involvement, insights from customers and end-users) can be integrated for business model innovation. This research develops a conceptual framework involving multi-disciplinary collaborative actions that strengthen and empower business model innovation.©2020 Springer. This is a post-peer-review, pre-copyedit version of an article published in Advances in Creativity, Innovation, Entrepreneurship and Communication of Design: Proceedings of the AHFE 2020 Virtual Conferences on Creativity, Innovation and Entrepreneurship, and Human Factors in Communication of Design, July 16-20, 2020, USA. The final authenticated version is available online at: http://dx.doi.org/10.1007/978-3-030-51626-0_9.fi=vertaisarvioitu|en=peerReviewed

    The Importance of Conserving Biodiversity Outside of Protected Areas in Mediterranean Ecosystems

    Get PDF
    Mediterranean-type ecosystems constitute one of the rarest terrestrial biomes and yet they are extraordinarily biodiverse. Home to over 250 million people, the five regions where these ecosystems are found have climate and coastal conditions that make them highly desirable human habitats. The current conservation landscape does not reflect the mediterranean biome's rarity and its importance for plant endemism. Habitat conversion will clearly outpace expansion of formal protected-area networks, and conservationists must augment this traditional strategy with new approaches to sustain the mediterranean biota. Using regional scale datasets, we determine the area of land in each of the five regions that is protected, converted (e.g., to urban or industrial), impacted (e.g., intensive, cultivated agriculture), or lands that we consider to have conservation potential. The latter are natural and semi-natural lands that are unprotected (e.g., private range lands) but sustain numerous native species and associated habitats. Chile has the greatest proportion of its land (75%) in this category and California-Mexico the least (48%). To illustrate the potential for achieving mediterranean biodiversity conservation on these lands, we use species-area curves generated from ecoregion scale data on native plant species richness and vertebrate species richness. For example, if biodiversity could be sustained on even 25% of existing unprotected, natural and semi-natural lands, we estimate that the habitat of more than 6,000 species could be represented. This analysis suggests that if unprotected natural and semi-natural lands are managed in a manner that allows for persistence of native species, we can realize significant additional biodiversity gains. Lasting biodiversity protection at the scale needed requires unprecedented collaboration among stakeholders to promote conservation both inside and outside of traditional protected areas, including on lands where people live and work

    How Plastic Can Phenotypic Plasticity Be? The Branching Coral Stylophora pistillata as a Model System

    Get PDF
    Phenotypic plasticity enables multicellular organisms to adjust morphologies and various life history traits to variable environmental challenges. Here, we elucidate fixed and plastic architectural rules for colony astogeny in multiple types of colonial ramets, propagated by cutting from genets of the branching coral Stylophora pistillata from Eilat, the Red Sea. We examined 16 morphometric parameters on 136 one-year old S. pistillata colonies (of seven genotypes), originating from small fragments belonging, each, to one of three single-branch types (single tips, start-up, and advanced bifurcating tips) or to structural preparative manipulations (representing a single or two growth axes). Experiments were guided by the rationale that in colonial forms, complexity of evolving phenotypic plasticity can be associated with a degree of structural modularity, where shapes are approached by erecting iterative growth patterns at different levels of coral-colony organization. Analyses revealed plastic morphometric characters at branch level, and predetermined morphometric traits at colony level (only single trait exhibited plasticity under extreme manipulation state). Therefore, under the experimental manipulations of this study, phenotypic plasticity in S. pistillata appears to be related to branch level of organization, whereas colony traits are controlled by predetermined genetic architectural rules. Each level of organization undergoes its own mode of astogeny. However, depending on the original ramet structure, the spherical 3-D colonial architecture in this species is orchestrated and assembled by both developmental trajectories at the branch level, and traits at the colony level of organization. In nature, branching colonial forms are often subjected to harsh environmental conditions that cause fragmentation of colony into ramets of different sizes and structures. Developmental traits that are plastic, responding to fragment structure and are not predetermine in controlling astogeny, allow formation of species-specific architecture product through integrated but variable developmental routes. This adaptive plasticity or regeneration is an efficient mechanism by which isolated fragments of branching coral species cope with external environmental forces
    corecore