7 research outputs found

    Systems level expression correlation of Ras GTPase regulators

    Get PDF
    Background: Proteins of the ubiquitously expressed core proteome are quantitatively correlated across multiple eukaryotic species. In addition, it was found that many protein paralogues exhibit expression anticorrelation, suggesting that the total level of protein with a given functionality must be kept constant. Methods: We performed Spearman’s rank correlation analyses of gene expression levels for the RAS GTPase subfamily and their regulatory GEF and GAP proteins across tissues and across individuals for each tissue. A large set of published data for normal tissues from a wide range of species, human cancer tissues and human cell lines was analysed. Results: We show that although the multidomain regulatory proteins of Ras GTPases exhibit considerable tissue and individual gene expression variability, their total amounts are balanced in normal tissues. In a given tissue, the sum of activating (GEFs) and deactivating (GAPs) domains of Ras GTPases can vary considerably, but each person has balanced GEF and GAP levels. This balance is impaired in cell lines and in cancer tissues for some individuals. Conclusions: Our results are relevant for critical considerations of knock out experiments, where functionally related homologs may compensate for the down regulation of a protein

    VitAL: Viterbi Algorithm for de novo Peptide Design

    Get PDF
    Background: Drug design against proteins to cure various diseases has been studied for several years. Numerous design techniques were discovered for small organic molecules for specific protein targets. The specificity, toxicity and selectivity of small molecules are hard problems to solve. The use of peptide drugs enables a partial solution to the toxicity problem. There has been a wide interest in peptide design, but the design techniques of a specific and selective peptide inhibitor against a protein target have not yet been established. Methodology/Principal Findings: A novel de novo peptide design approach is developed to block activities of disease related protein targets. No prior training, based on known peptides, is necessary. The method sequentially generates the peptide by docking its residues pair by pair along a chosen path on a protein. The binding site on the protein is determined via the coarse grained Gaussian Network Model. A binding path is determined. The best fitting peptide is constructed by generating all possible peptide pairs at each point along the path and determining the binding energies between these pairs and the specific location on the protein using AutoDock. The Markov based partition function for all possible choices of the peptides along the path is generated by a matrix multiplication scheme. The best fitting peptide for the given surface is obtained by a Hidden Markov model using Viterbi decoding. The suitability of the conformations of the peptides that result upon binding on the surface are included in the algorithm by considering the intrinsic Ramachandran potentials

    A RAC-GEF network critical for early intestinal tumourigenesis

    No full text
    RAC1 activity is critical for intestinal homeostasis, and is required for hyperproliferation driven by loss of the tumour suppressor gene Apc in the murine intestine. To avoid the impact of direct targeting upon homeostasis, we reasoned that indirect targeting of RAC1 via RAC-GEFs might be effective. Transcriptional profiling of Apc deficient intestinal tissue identified Vav3 and Tiam1 as key targets. Deletion of these indicated that while TIAM1 deficiency could suppress Apc-driven hyperproliferation, it had no impact upon tumourigenesis, while VAV3 deficiency had no effect. Intriguingly, deletion of either gene resulted in upregulation of Vav2, with subsequent targeting of all three (Vav2-/- Vav3-/- Tiam1-/-), profoundly suppressing hyperproliferation, tumourigenesis and RAC1 activity, without impacting normal homeostasis. Critically, the observed RAC-GEF dependency was negated by oncogenic KRAS mutation. Together, these data demonstrate that while targeting RAC-GEF molecules may have therapeutic impact at early stages, this benefit may be lost in late stage disease.Funding: R.P.F was funded through a fellowship from the Royal Commission for the Exhibition of 1851. A.K.N. and L.B.Z. are funded through CRUK Grand Challenge Rosetta (A25045). S.K.F. is funded through the PCUK Future Leaders Academy (2017FutureLeadersAcademy). K.G. is funded through CRUK Grand Challenge Specificancer (A29055). L.M.M., M.B., K.I.A., M.D. and O.J.S. are supported through CRUK (A15673, A15565, A17096, A21139 and A17196 respectively). A.K.J. and M.T. are supported by BBSRC. D.M.G. and O.J.S. were also funded through ERC ColonCan (ERC starting grant 311301). Additionally, K.A.P., A.D.C., D.M.G., J.J., R.P.F., B.M., W.C., A.H., E.M., L.M.M., C.N., D.S., K.I.A., M.D. and O.J.S. are supported by CRUK Beatson core funding (A17196

    Insights into the Mechanisms of Basal Coordination of Transcription Using a Genome-Reduced Bacterium

    No full text
    Coordination of transcription in bacteria occurs at supra-operonic scales, but the extent, specificity, and mechanisms of such regulation are poorly understood. Here, we tackle this problem by profiling the transcriptome of the model organism Mycoplasma pneumoniae across 115 growth conditions. We identify three qualitatively different levels of co-expression corresponding to distinct relative orientations and intergenic properties of adjacent genes. We reveal that the degree of co-expression between co-directional adjacent operons, and more generally between genes, is tightly related to their capacity to be transcribed en bloc into the same mRNA. We further show that this genome-wide pervasive transcription of adjacent genes and operons is specifically repressed by DNA regions preferentially bound by RNA polymerases, by intrinsic terminators, and by large intergenic distances. Taken together, our findings suggest that the basal coordination of transcription is mediated by the physical entities and mechanical properties of the transcription process itself, and that operon-like behaviors may strongly vary from condition to condition.This work was supported by FundaciĂłn Marcelino Botin and the Spanish Ministerio de EconomĂ­a y Competitividad (BIO2007-61762). This project was financed by Instituto de Salud Carlos III and co-financed by FederaciĂłn Española de Enfermedades Raras under grant agreement PI10/01702 and the European Research Council and European Union’s Horizon 2020 research and innovation program under grant agreements 634942 (MycoSynVac) and 670216 (MYCOCHASSIS). The Centre for Genomic Regulation acknowledges the support of the Spanish Ministry of Economy and Competitiveness, “Centro de Excelencia Severo Ochoa 2013-2017,” SEV-2012-0208

    Systems level expression correlation of Ras GTPase regulators

    No full text
    Background: Proteins of the ubiquitously expressed core proteome are quantitatively correlated across multiple eukaryotic species. In addition, it was found that many protein paralogues exhibit expression anticorrelation, suggesting that the total level of protein with a given functionality must be kept constant. Methods: We performed Spearman’s rank correlation analyses of gene expression levels for the RAS GTPase subfamily and their regulatory GEF and GAP proteins across tissues and across individuals for each tissue. A large set of published data for normal tissues from a wide range of species, human cancer tissues and human cell lines was analysed. Results: We show that although the multidomain regulatory proteins of Ras GTPases exhibit considerable tissue and individual gene expression variability, their total amounts are balanced in normal tissues. In a given tissue, the sum of activating (GEFs) and deactivating (GAPs) domains of Ras GTPases can vary considerably, but each person has balanced GEF and GAP levels. This balance is impaired in cell lines and in cancer tissues for some individuals. Conclusions: Our results are relevant for critical considerations of knock out experiments, where functionally related homologs may compensate for the down regulation of a protein.This work was funded by the EU (PRIMES under grant agreement number FP7-HEALTH-F4- 2011-278568). This work was supported by the Spanish Ministerio de Economía y Competitividad, Plan Nacional BIO2012-39754 and Plan Estatal BFU2015-63571 and the European Fund for Regional Development. We acknowledge support of the Spanish Ministry of Economy, Industry and Competitiveness (MEIC) to the EMBL partnership, to the Spanish Ministry of Economy and Competitiveness (MEC) ‘Centro de Excelencia Severo Ochoa’ and to the CERCA Programme / Generalitat de Catalunya

    Defining a minimal cell: essentiality of small ORFs and ncRNAs in a genome-reduced bacterium

    Get PDF
    Identifying all essential genomic components is critical for the assembly of minimal artificial life. In the genome-reduced bacterium Mycoplasma pneumoniae, we found that small ORFs (smORFs; < 100 residues), accounting for 10% of all ORFs, are the most frequently essential genomic components (53%), followed by conventional ORFs (49%). Essentiality of smORFs may be explained by their function as members of protein and/or DNA/RNA complexes. In larger proteins, essentiality applied to individual domains and not entire proteins, a notion we could confirm by expression of truncated domains. The fraction of essential non-coding RNAs (ncRNAs) non-overlapping with essential genes is 5% higher than of non-transcribed regions (0.9%), pointing to the important functions of the former. We found that the minimal essential genome is comprised of 33% (269,410 bp) of the M. pneumoniae genome. Our data highlight an unexpected hidden layer of smORFs with essential functions, as well as non-coding regions, thus changing the focus when aiming to define the minimal essential genome

    Defining a minimal cell: essentiality of small ORFs and ncRNAs in a genome-reduced bacterium

    No full text
    Identifying all essential genomic components is critical for the assembly of minimal artificial life. In the genome-reduced bacterium Mycoplasma pneumoniae, we found that small ORFs (smORFs; < 100 residues), accounting for 10% of all ORFs, are the most frequently essential genomic components (53%), followed by conventional ORFs (49%). Essentiality of smORFs may be explained by their function as members of protein and/or DNA/RNA complexes. In larger proteins, essentiality applied to individual domains and not entire proteins, a notion we could confirm by expression of truncated domains. The fraction of essential non-coding RNAs (ncRNAs) non-overlapping with essential genes is 5% higher than of non-transcribed regions (0.9%), pointing to the important functions of the former. We found that the minimal essential genome is comprised of 33% (269,410 bp) of the M. pneumoniae genome. Our data highlight an unexpected hidden layer of smORFs with essential functions, as well as non-coding regions, thus changing the focus when aiming to define the minimal essential genome
    corecore