151 research outputs found

    Imprinted MicroRNA Gene Clusters in the Evolution, Development, and Functions of Mammalian Placenta

    Get PDF
    In mammals, the expression of a subset of microRNA (miRNA) genes is governed by genomic imprinting, an epigenetic mechanism that confers monoallelic expression in a parent-of-origin manner. Three evolutionarily distinct genomic intervals contain the vast majority of imprinted miRNA genes: the rodent-specific, paternally expressed C2MC located in intron 10 of the Sfmbt2 gene, the primate-specific, paternally expressed C19MC positioned at human Chr.19q13.4 and the eutherian-specific, maternally expressed miRNAs embedded within the imprinted Dlk1-Dio3 domains at human 14q32 (also named C14MC in humans). Interestingly, these imprinted miRNA genes form large clusters composed of many related gene copies that are co-expressed with a marked, or even exclusive, localization in the placenta. Here, we summarize our knowledge on the evolutionary, molecular, and physiological relevance of these epigenetically-regulated, recently-evolved miRNAs, by focusing on their roles in placentation and possibly also in pregnancy diseases (e.g., preeclampsia, intrauterine growth restriction, preterm birth)

    Nuclear RNA sequencing of the mouse erythroid cell transcriptome.

    Get PDF
    In addition to protein coding genes a substantial proportion of mammalian genomes are transcribed. However, most transcriptome studies investigate steady-state mRNA levels, ignoring a considerable fraction of the transcribed genome. In addition, steady-state mRNA levels are influenced by both transcriptional and posttranscriptional mechanisms, and thus do not provide a clear picture of transcriptional output. Here, using deep sequencing of nuclear RNAs (nucRNA-Seq) in parallel with chromatin immunoprecipitation sequencing (ChIP-Seq) of active RNA polymerase II, we compared the nuclear transcriptome of mouse anemic spleen erythroid cells with polymerase occupancy on a genome-wide scale. We demonstrate that unspliced transcripts quantified by nucRNA-seq correlate with primary transcript frequencies measured by RNA FISH, but differ from steady-state mRNA levels measured by poly(A)-enriched RNA-seq. Highly expressed protein coding genes showed good correlation between RNAPII occupancy and transcriptional output; however, genome-wide we observed a poor correlation between transcriptional output and RNAPII association. This poor correlation is due to intergenic regions associated with RNAPII which correspond with transcription factor bound regulatory regions and a group of stable, nuclear-retained long non-coding transcripts. In conclusion, sequencing the nuclear transcriptome provides an opportunity to investigate the transcriptional landscape in a given cell type through quantification of unspliced primary transcripts and the identification of nuclear-retained long non-coding RNAs

    Introduction to the Neuropsychological Norms for the US-Mexico Border Region in Spanish (NP-NUMBRS) Project

    Get PDF
    ObjectiveThe present introduction to the Neuropsychological Norms for the U.S.-Mexico Border Region in Spanish (NP-NUMBRS) project aims to provide an overview of the conceptual framework and rationale that guided the development of this project.MethodsWe describe important aspects of our conceptual framework, which was guided by some of the main purposes of neuropsychological testing, including the identification of underlying brain dysfunction, and the characterization of cognitive strengths and weakness relevant to everyday functioning. We also provide our rationale for focusing this norm development project on Spanish-speakers in the United States, and provide an outline of the articles included in this Special Issue focused on the NP-NUMBRS project.ConclusionsThe data presented in this Special Issue represent an important tool for clinicians and researchers working in the neuropsychological assessment of Spanish-speakers in the United States

    Prototype Positive Control Wells for Malaria Rapid Diagnostic Tests: Prospective Evaluation of Implementation Among Health Workers in Lao People's Democratic Republic and Uganda.

    Get PDF
    Rapid diagnostic tests (RDTs) are widely used for malaria diagnosis, but lack of quality control at point of care restricts trust in test results. Prototype positive control wells (PCW) containing recombinant malaria antigens have been developed to identify poor-quality RDT lots. This study assessed community and facility health workers' (HW) ability to use PCWs to detect degraded RDTs, the impact of PCW availability on RDT use and prescribing, and preferred strategies for implementation in Lao People's Democratic Republic (Laos) and Uganda. A total of 557 HWs participated in Laos (267) and Uganda (290). After training, most (88% to ≥ 99%) participants correctly performed the six key individual PCW steps; performance was generally maintained during the 6-month study period. Nearly all (97%) reported a correct action based on PCW use at routine work sites. In Uganda, where data for 127,775 individual patients were available, PCW introduction in health facilities was followed by a decrease in antimalarial prescribing for RDT-negative patients ≥ 5 years of age (4.7-1.9%); among community-based HWs, the decrease was 12.2% (P < 0.05) for all patients. Qualitative data revealed PCWs as a way to confirm RDT quality and restore confidence in RDT results. HWs in malaria-endemic areas are able to use prototype PCWs for quality control of malaria RDTs. PCW availability can improve HWs' confidence in RDT results, and benefit malaria diagnostic programs. Lessons learned from this study may be valuable for introduction of other point-of-care diagnostic and quality-control tools. Future work should evaluate longer term impacts of PCWs on patient management

    Evaluation of Field Sobriety Tests for Identifying Drivers Under the Influence of Cannabis: A Randomized Clinical Trial

    Get PDF
    IMPORTANCE: With increasing medicinal and recreational cannabis legalization, there is a public health need for effective and unbiased evaluations for determining whether a driver is impaired due to Δ9-tetrahydrocannabinol (THC) exposure. Field sobriety tests (FSTs) are a key component of the gold standard law enforcement officer-based evaluations, yet controlled studies are inconclusive regarding their efficacy in detecting whether a person is under the influence of THC. OBJECTIVE: To examine the classification accuracy of FSTs with respect to cannabis exposure and driving impairment (as determined via a driving simulation). DESIGN, SETTING, AND PARTICIPANTS: This double-blind, placebo-controlled parallel randomized clinical trial was conducted from February 2017 to June 2019 at the Center for Medicinal Cannabis Research, University of California, San Diego. Participants were aged 21 to 55 years and had used cannabis in the past month. Data were analyzed from August 2021 to April 2023. INTERVENTION: Participants were randomized 1:1:1 to placebo (0.02% THC), 5.9% THC cannabis, or 13.4% THC cannabis smoked ad libitum. MAIN OUTCOME AND MEASURES: The primary end point was law enforcement officer determination of FST impairment at 4 time points after smoking. Additional measures included officer estimation as to whether participants were in the THC or placebo group as well as driving simulator data. Officers did not observe driving performance. RESULTS: The study included 184 participants (117 [63.6%] male; mean [SD] age, 30 [8.3] years) who had used cannabis a mean (SD) of 16.7 (9.8) days in the past 30 days; 121 received THC and 63, placebo. Officers classified 98 participants (81.0%) in the THC group and 31 (49.2%) in the placebo group as FST impaired (difference, 31.8 percentage points; 95% CI, 16.4-47.2 percentage points; P \u3c .001) at 70 minutes after smoking. The THC group performed significantly worse than the placebo group on 8 of 27 individual FST components (29.6%) and all FST summary scores. However, the placebo group did not complete a median of 8 (IQR, 5-11) FST components as instructed. Of 128 participants classified as FST impaired, officers suspected 127 (99.2%) as having received THC. Driving simulator performance was significantly associated with results of select FSTs (eg, ≥2 clues on One Leg Stand was associated with impairment on the simulator: odds ratio, 3.09; 95% CI, 1.63-5.88; P \u3c .001). CONCLUSIONS AND RELEVANCE: This randomized clinical trial found that when administered by highly trained officers, FSTs differentiated between individuals receiving THC vs placebo and driving abilities were associated with results of some FSTs. However, the high rate at which the participants receiving placebo failed to adequately perform FSTs and the high frequency that poor FST performance was suspected to be due to THC-related impairment suggest that FSTs, absent other indicators, may be insufficient to denote THC-specific impairment in drivers. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02849587

    Human imprinted retrogenes exhibit non-canonical imprint chromatin signatures and reside in non-imprinted host genes

    Get PDF
    Imprinted retrotransposed genes share a common genomic organization including a promoter-associated differentially methylated region (DMR) and a position within the intron of a multi-exonic ‘host’ gene. In the mouse, at least one transcript of the host gene is also subject to genomic imprinting. Human retrogene orthologues are imprinted and we reveal that human host genes are not imprinted. This coincides with genomic rearrangements that occurred during primate evolution, which increase the separation between the retrogene DMRs and the host genes. To address the mechanisms governing imprinted retrogene expression, histone modifications were assayed at the DMRs. For the mouse retrogenes, the active mark H3K4me2 was associated with the unmethylated paternal allele, while the methylated maternal allele was enriched in repressive marks including H3K9me3 and H4K20me3. Two human retrogenes showed monoallelic enrichment of active, but not of repressive marks suggesting a partial uncoupling of the relationship between DNA methylation and repressive histone methylation, possibly due to the smaller size and lower CpG density of these DMRs. Finally, we show that the genes immediately flanking the host genes in mouse and human are biallelically expressed in a range of tissues, suggesting that these loci are distinct from large imprinted clusters

    Driving Under the Influence of Cannabis: Impact of Combining Toxicology Testing with Field Sobriety Tests

    Get PDF
    BACKGROUND: Cannabis is increasingly used both medically and recreationally. With widespread use, there is growing concern about how to identify cannabis-impaired drivers. METHODS: A placebo-controlled randomized double-blinded protocol was conducted to study the effects of cannabis on driving performance. One hundred ninety-one participants were randomized to smoke ad libitum a cannabis cigarette containing placebo or delta-9-tetrahydrocannabinol (THC) (5.9% or 13.4%). Blood, oral fluid (OF), and breath samples were collected along with longitudinal driving performance on a simulator (standard deviation of lateral position [SDLP] and car following [coherence]) over a 5-hour period. Law enforcement officers performed field sobriety tests (FSTs) to determine if participants were impaired. RESULTS: There was no relationship between THC concentrations measured in blood, OF, or breath and SDLP or coherence at any of the timepoints studied (P \u3e 0.05). FSTs were significant (P \u3c 0.05) for classifying participants into the THC group vs the placebo group up to 188 minutes after smoking. Seventy-one minutes after smoking, FSTs classified 81% of the participants who received active drug as being impaired. However, 49% of participants who smoked placebo (controls) were also deemed impaired at this same timepoint. Combining a 2 ng/mL THC cutoff in OF with positive findings on FSTs reduced the number of controls classified as impaired to zero, 86 minutes after smoking the placebo. CONCLUSIONS: Requiring a positive toxicology result in addition to the FST observations substantially improved the classification accuracy regarding possible driving under the influence of THC by decreasing the percentage of controls classified as impaired
    corecore