5 research outputs found

    Safety assessment of the commensal strain Bacteroides xylanisolvens DSM 23964

    Get PDF
    AbstractWe recently isolated and characterized the new strain Bacteroides xylanisolvens DSM 23964 and presented it as potential candidate for the first natural probiotic strain of the genus Bacteroides. In order to evaluate the safety of this strain for use in food, the following standard toxicity assays were conducted with this strain in both viable and pasteurized form: in vitro bacterial reverse mutation assay, in vitro chromosomal aberration assay, and 90day subchronic repeated oral toxicity studies in mice. No mutagenic, clastogenic, or toxic effects were detected even at extremely high doses. In addition, no clinical, hematological, ophthalmological, or histopathological abnormality could be observed after necropsy at any of the doses tested. Hence, the NOAEL could be estimated to be greater than 2.3×1011 CFUs, and 2.3×1014 for pasteurized bacteria calculated as equivalent for an average 70kg human being. In addition, the absence of any in vivo pathogenic properties of viable B. xylanisolvens DSM 23964 cells was confirmed by means of an intraperitoneal abscess formation model in mice which also demonstrated that the bacteria are easily eradicated by the host’s immune system. The obtained results support the assumed safety of B. xylanisolvens DSM 23964 for use in food

    Preliminary Safety Evaluation of a New Bacteroides xylanisolvens Isolate

    No full text
    Besides conferring some health benefit to the host, a bacterial strain must present an unambiguous safety status to be considered a probiotic. We here present the preliminary safety evaluation of a new Bacteroides xylanisolvens strain (DSM 23964) isolated from human feces. First results suggest that it may be able to provide probiotic health benefits. Its identity was confirmed by biochemical analysis, by sequencing of its 16S rRNA genes, and by DNA-DNA hybridization. Virulence determinants known to occur in the genus Bacteroides, such the bft enterotoxin and other enzymatic activities involved in the degradation of the extracellular matrix and the capsular polysaccharide PS A, were absent in this strain. The investigation of the antibiotic susceptibility indicated that strain DSM 23964 was sensitive to metronidazole, meropenem agents, and clindamycin. Resistance to penicillin and ampicillin was identified to be conferred by the β-lactamase cepA gene and could therefore be restored by adding β-lactamase inhibitors. The localization of the cepA gene in the genome of strain DSM 23964 and the absence of detectable plasmids further suggest that a transfer of β-lactamase activity or the acquisition of other antibiotic resistances are highly improbable. Taken together, the presented data indicate that the strain B. xylanisolvens DSM 23964 has no virulence potential. Since it also resists the action of gastric enzymes and low-pH conditions, this strain is an interesting candidate for further investigation of its safety and potential health-promoting properties
    corecore