6,253 research outputs found

    Time-dependent density-functional theory beyond the adiabatic approximation: insights from a two-electron model system

    Get PDF
    Most applications of time-dependent density-functional theory (TDDFT) use the adiabatic local-density approximation (ALDA) for the dynamical exchange-correlation potential Vxc(r,t). An exact (i.e., nonadiabatic) extension of the ground-state LDA into the dynamical regime leads to a Vxc(r,t) with a memory, which causes the electron dynamics to become dissipative. To illustrate and explain this nonadiabatic behavior, this paper studies the dynamics of two interacting electrons on a two-dimensional quantum strip of finite size, comparing TDDFT within and beyond the ALDA with numerical solutions of the two-electron time-dependent Schroedinger equation. It is shown explicitly how dissipation arises through multiple particle-hole excitations, and how the nonadiabatic extension of the ALDA fails for finite systems, but becomes correct in the thermodynamic limit.Comment: 10 pages, 7 figure

    Dissipation through spin Coulomb drag in electronic spin dynamics

    Get PDF
    Spin Coulomb drag (SCD) constitutes an intrinsic source of dissipation for spin currents in metals and semiconductors. We discuss the power loss due to SCD in potential spintronics devices and analyze in detail the associated damping of collective spin-density excitations. It is found that SCD contributes substantially to the linewidth of intersubband spin plasmons in parabolic quantum wells, which suggests the possibility of a purely optical quantitative measurement of the SCD effect by means of inelastic light scattering

    Time-dependent current density functional theory for the linear response of weakly disordered systems

    Get PDF
    This paper develops a quantitatively accurate first-principles description for the frequency and the linewidth of collective electronic excitations in inhomogeneous weakly disordered systems. A finite linewidth in general has intrinsic and extrinsic sources. At low temperatures and outside the region where electron-phonon interaction occurs, the only intrinsic damping mechanism is provided by electron-electron interaction. This kind of intrinsic damping can be described within time-dependent density-functional theory (TDFT), but one needs to go beyond the adiabatic approximation and include retardation effects. It was shown previously that a density-functional response theory that is local in space but nonlocal in time has to be constructed in terms of the currents, rather than the density. This theory will be reviewed in the first part of this paper. For quantitatively accurate linewidths, extrinsic dissipation mechanisms, such as impurities or disorder, have to be included. In the second part of this paper, we discuss how extrinsic dissipation can be described within the memory function formalism. We first review this formalism for homogeneous systems, and then present a synthesis of TDFT with the memory function formalism for inhomogeneous systems, to account simultaneously for intrinsic and extrinsic damping of collective excitations. As example, we calculate frequencies and linewidths of intersubband plasmons in a 40 nm wide GaAs/AlGaAs quantum well.Comment: 20 pages, 3 figure

    Dissipation through spin Coulomb drag in electronic spin transport and optical excitations

    Get PDF
    Spin Coulomb drag (SCD) constitutes an intrinsic source of dissipation for spin currents in metals and semiconductors. We discuss the power loss due to SCD in potential spintronics devices and analyze in detail the associated damping of collective spin-density excitations. It is found that SCD contributes substantially to the linewidth of intersubband spin plasmons in semiconductor quantum wells, which suggests the possibility of a purely optical quantitative measurement of the SCD effect in a parabolic well through inelastic light scattering

    Time-dependent density-functional theory for electronic excitations in materials: basics and perspectives

    Get PDF
    Time-dependent density-functional theory (TDDFT) is widely used to describe electronic excitations in complex finite systems with large numbers of atoms, such as biomolecules and nanocrystals. The first part of this paper will give a simple and pedagogical explanation, using a two-level system, which shows how the basic TDDFT formalism for excitation energies works. There is currently an intense effort underway to develop TDDFT methodologies for the charge and spin dynamics in extended systems, to calculate optical properties of bulk and nanostructured materials, and to study transport through molecular junctions. The second part of this paper highlights some challenges and recent advances of TDDFT in these areas. Two examples are discussed: excitonic effects in insulators and intersubband plasmon excitations in doped semiconductor quantum wells.Comment: 15 pages, 2 figures, International Conference on Materials Discovery and Databases: Materials Informatics and DF

    Memory function formalism approach to electrical conductivity and optical response of dilute magnetic semiconductors

    Get PDF
    A combination of the memory function formalism and time-dependent density-functional theory is applied to transport in dilute magnetic semiconductors. The approach considers spin and charge disorder and electron-electron interaction on an equal footing. Within the weak disorder limit and using a simple parabolic approximation for the valence band we show that Coulomb and exchange scattering contributions to the resistivity in GaMnAs are of the same order of magnitude. The positional correlations of defects result in a significant increase of Coulomb scattering, while the suppression of localized spin fluctuations in the ferromagnetic phase contributes substantially to the experimentally observed drop of resistivity below T_c. A proper treatment of dynamical screening and collective excitations is essential for an accurate description of infrared absorption.Comment: Proceedings of the 13th Brazilian Workshop on Semiconductors Physic

    Real-time electron dynamics with exact-exchange time-dependent density-functional theory

    Get PDF
    The exact exchange potential in time-dependent density-functional theory is defined as an orbital functional through the time-dependent optimized effective potential (TDOEP) method. We numerically solve the TDOEP integral equation for the real-time nonlinear intersubband electron dynamics in a semiconductor quantum well with two occupied subbands. By comparison with adiabatic approximations, it is found that memory effects in the exact exchange potential become significant when the electron dynamics takes place in the vicinity of intersubband resonances.Comment: 5 pages, 5 figure

    Coherent control of intersubband optical bistability in quantum wells

    Get PDF
    We present a study of the nonlinear intersubband (ISB) response of conduction electrons in a GaAs/AlGaAs quantum well to strong THz radiation, using a density-matrix approach combined with time-dependent density-functional theory. We demonstrate coherent control of ISB optical bistability, using THz control pulses to induce picosecond switching between the bistable states. The switching speed is determined by the ISB relaxation and decoherence times, T1 and T2.Comment: 3 pages, 3 figure
    • …
    corecore