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The exact exchange potential in time-dependent density-functional theory is defined as an orbital
functional through the time-dependent optimized effective potential (TDOEP) method. We numerically
solve the TDOEP integral equation for the real-time nonlinear intersubband electron dynamics in a
semiconductor quantum well with two occupied subbands. It is found that memory effects become
significant in the vicinity of intersubband resonances.
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Time-dependent density-functional theory (TDDFT) [1]
has been very successful in describing electronic excita-
tions in large molecules [2] using simple time-dependent
exchange-correlation (XC) functionals such as the adia-
batic local-density approximation (ALDA). However, nei-
ther the ALDA nor the adiabatic gradient-corrected XC
functionals capture multiple or charge-transfer excitations
[3,4] or excitons [5]. These difficulties are not due to
intrinsic deficiencies of TDDFT, but indicate the need for
better functionals: for multiple and charge-transfer excita-
tions one must abandon the adiabatic approximation, and
excitons in solids require long-range (1=q2) XC kernels.
Moreover, for strong-field multiple ionization it was sug-
gested that the XC potential should change discontinuously
with the number of electrons N [6].

Several promising ideas for new time-dependent XC
functionals have been explored, such as current-TDDFT
(TDCDFT) [7,8] and many-body Green’s function tech-
niques [5]. TDCDFT is well suited to describe polarizabil-
ity and collective excitations in extended systems [9,10],
but introduces spurious dissipation in finite systems [11].
The many-body techniques of Ref. [5] give excellent opti-
cal spectra in insulators, but cannot be easily extended into
the nonlinear or the real-time domain.

The advantages of orbital-dependent functionals have
long been recognized in static DFT [12]. Local XC poten-
tials associated with orbital-dependent XC energies (e.g.,
exact exchange) are constructed with the optimized effec-
tive potential (OEP) method [13] or the simplified but
nearly as accurate Krieger-Li-Iafrate (KLI) scheme [14].
The resulting XC potentials are self-interaction free, have
the correct �1=r asymptotics for finite systems, exhibit
discontinuities upon change of N, and generally produce
high-quality orbitals, eigenvalues, and band structures
[12].

This Letter deals with the time-dependent optimized
effective potential (TDOEP) [15,16], which generalizes
the static OEP method, carrying over the desirable proper-
ties mentioned above and introducing new features that are
unique to the dynamical case. The TDOEP integral equa-
tion for the local XC potential Vxc� is given by [15]
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The �j� are time-dependent Kohn-Sham orbitals,
uxcj��r; t� � ���j��r; t��

�1�Axc=��j��r; t�, and Axc is an
orbital-dependent XC action functional (which is rigor-
ously defined on a Keldysh contour [16]). We formally
include spin �, but consider only nonmagnetic systems.

Linearization of the TDOEP leads to a frequency-
dependent XC kernel [17]. This frequency dependence
was found to play only a minor role in the optical absorp-
tion of insulators [18] and dynamic polarizabilities of
atoms [19]. Until now there have been no applications of
the full, real-time TDOEP, only of the time-dependent KLI
(TDKLI) approximation [15]. An earlier unsuccessful at-
tempt to solve Eq. (1) was plagued by numerical instabil-
ities [20]. In this Letter, we present an algorithm for stable
numerical solutions of the exact-exchange TDOEP and
apply it to nonlinear electron dynamics in quantum wells.

Our goal is to explore the significance of memory effects
in TDOEP. Memory-dependent XC potentials in TDCDFT
cause elastic and dissipative effects in the electron dynam-
ics [8]. In particular, the adiabatic approximation was
shown to break down in the limit of large, rapid deforma-
tions [21]. Here, we study the so far unresolved question of
the importance of memory in exact-exchange TDDFT in
different dynamical regimes. To isolate the effects of
memory in a clear-cut way, we will compare the full
TDOEP with an adiabatic approximation (AOEP).

Adiabatic TDOEP scheme.—Under the implicit as-
sumption that a system evolves so slowly that it always
remains close to the ground state of a given time-dependent
potential, adiabatic XC functionals have no memory and
only depend on the instantaneous density or orbitals. While
this is straightforward in ALDA and TDKLI, the AOEP is
more complicated since the static OEP [13,14] also de-
pends on the energy eigenvalues, whose meaning in the
dynamical regime is not obvious.
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We define the AOEP as that static OEP potential whose
associated ground-state density equals the instantaneous
n�t�. This requires two steps at each t: First, find that static
Kohn-Sham potential VtKS which produces n�t� as its self-
consistent ground-state density and whose XC part is the
static OEP. Since the external part of VtKS is in general
different from the actual time-dependent external potential,
and a priori unknown, VtKS must be found by numerical
inversion [22]. Next, plug the resulting complete set of
orbitals �t

j��r� and eigenvalues �tj� into the static OEP
[13,14]. The so-obtained AOEP potential at time twill here
be used self-consistently during time propagation. It then
becomes identical with TDOEP in the static limit where
the system remains in its ground state, and both reduce to
the static OEP.

TDOEP for quantum wells.—We consider conduction
electrons in n-doped semiconductor quantum wells in
effective-mass approximation [8,9], confined along z.
The ground-state envelope function for the jth subband
�0
j��z� follows from a one-dimensional Kohn-Sham equa-

tion, with density n�z� �
Pocc
j j�

0
j��z�j

2��F � �j��=� and
subband and Fermi energy levels �j� and �F. To describe
intersubband dynamics preserving the translational sym-
metry in the quantum well plane (ignoring disorder and
phonons), we propagate the subband envelope functions
using the time-dependent Kohn-Sham equation
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with initial condition �j��z; t0� � �0
j��z�. Here, Vdr is a

time-dependent driving field (see below), Vconf�z� and VH
are the confining square well and the Hartree potential.

Assuming that the system is in its ground state for t < t0,
one obtains the following TDOEP equation:
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where �kj�F �
2 � 2��F � �j��, uxj� for quantum wells has

been given by Reboredo and Proetto [23], and V0
x�, u0

xj�,
and�0

j� follow from static OEP. The second term in Eq. (3)
comes from �j��z; t� � �0

j��z�e
�i�jt for t < t0.

Numerical algorithm.—Our numerical TDOEP ap-
proach uses a uniform spatial grid along z and a time
discretization in uniform steps �t, from t0 up until some

final time T. Let us first consider two separate problems.
(i) Assuming that a V0x��z; t� is explicitly given for t0 

t < T, Eq. (2) is easily propagated with standard Crank-
Nicholson and predictor-corrector schemes. This yields the
orbitals �0j��z; t�. (ii) In turn, assuming some �00j��z; t�’s to
be given for t0 
 t < T, Eq. (3) can be solved by discretiz-
ing the spatial and time integrals (e.g., with the trapezoidal
rule), which leads to a linear equation determining
V00x��z; t�.

The full TDOEP scheme requires the simultaneous so-
lution of Eqs. (2) and (3) over the interval [t0, T]. We
achieve this using a straightforward iterative loop, taking
the orbitals calculated in step (i) as input to step (ii), and
then feeding the resulting XC potential back as input to
step (i). Self-consistency is reached if �00j� � �0j� and
V00x� � V 0x�. The loop is initialized with the TDKLI ap-
proximation for V 0x� in the first iteration step.

Let us define Gl �
R
T
t0
dtjdl�t� � dl�1�t�j=

R
T
t0
dtjdl�t�j

to monitor convergence, where dl�t� �
R
znl�z; t�dz is the

dipole moment at the lth iteration. Our algorithm is stable
and rapidly convergent, as we will show below.

The instability of the step-by-step algorithm of Ref. [20]
ultimately comes from the fact that the integrand of Eq. (1)
vanishes at the upper limit t � t0, so that Vx��t0� is only
determined for t0 < t. In our iterative scheme, this indeter-
minacy of the XC potential affects only the final point T
and is therefore harmless.

Results and discussion.—We consider a 40-nm square
GaAs=Al0:3Ga0:7As quantum well with conduction band
effective mass m� � 0:067m and charge e� � e=

������
13
p

, and
with an electronic densityNs � 2:2� 1011 cm�2 such that
the two lowest subbands (j � 1, 2) are occupied.

We first discuss free charge-density oscillations. The
initial state is calculated in the presence of a
0:01 mV=nm static electric field. At t0 � 0, the field is
abruptly switched off, which puts the electrons in an ex-
cited state and triggers collective charge-density oscilla-
tions. Figure 1 shows that the convergence index G of our
numerical algorithm drops down to 10�9 after only 20
iterations. Convergence was similar in all TDOEP calcu-
lations. We found that the zero-force theorem was always
satisfied to within the limits of numerical resolution, even
for TDKLI (despite recent reports to the contrary in metal
clusters [24]). The strong quantum well confinement seems
to help enforce the zero-force theorem in TDKLI.

Figure 1 shows the dipole moment d�t� obtained with
TDOEP, AOEP, and TDKLI, as well as the TDOEP dipole
power spectrum (the others are very similar). The dynam-
ics is mainly determined by the 1! 2 and 2! 3 intersub-
band plasmons; the former dominates since 90% of the
electrons sit in the first subband at the given Ns. Higher
plasmons (1! 4, 2! 5) are orders of magnitude weaker.
The differences between the methods are minor: the
TDOEP oscillations are slightly faster, TDKLI is slowest,
and AOEP in between, but much closer to TDKLI. The first
plasmon frequency !12 is 10.4 meV in TDOEP and
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10.2 meV in AOEP and TDKLI; !23, !14, and !25 are at
16.0, 42, and 61 meV in all three methods.

We find that the exact-exchange TDOEP does not cause
any dissipation, similar to the high-frequency limit of
TDCDFT [7,8]; the nonadiabatic XC contribution is thus
purely elastic, i.e., phase shifted by � with respect to the
adiabatic part [21]. This is consistent with the observed
behavior of the TDOEP versus AOEP, where the memory
leads to a small frequency renormalization (blueshift) of
the dominant !12 plasmon.

Nonadiabatic effects play a pronounced role at high
frequencies, when the system rapidly undergoes large de-
formations. The crossover from the low- to the high-
frequency region occurs around the average plasma fre-
quency of the system [21]. To explore different dynamic
regimes, we now consider charge-density oscillations
driven by Vdr�z; t� � eEzf�t� sin�!t�, with electric field
amplitude E, intensity I � E2, and frequency !. The en-
velope f�t� is switched on at t0 � 0 over a 1-cycle linear
ramp and then kept constant.

Figures 2–5 show d�t� for ! � 11:2, 20, 40, and
50 meV and intensities 10, 20, 40, and 1000 W=cm2,
respectively, probing the dynamics close to !12, !23,
!14, and between !14 and !25. As expected, the dipole
response is largest at 11.2 meV since we are close to the
dominating plasmon. At 50 meV, far away from any reso-
nance, we need a much larger intensity. Again, the three
methods give comparable results for d�t�. Figures 2 and 3
show that AOEP falls in between TDOEP and TDKLI, but
remains closer to TDKLI. For 40 meV there are more
pronounced differences, probably due to crosstalk of sev-
eral plasmon resonances slightly off tune. Interestingly, at
50 meV, the results for d�t� are very close. We found a
similar behavior at low frequencies well below !12. This

suggests that at intermediate frequencies (not too far from
the lowest intersubband plasmons), memory effects play a
significant role only in the vicinity of resonances.

For a more detailed analysis, especially of the phase
shifts of Vx�, it is useful to consider the XC power:

 P�t� �
Z
dzj�z; t�rz�Vx��z; t� � V0

x��z��; (4)

where j�z; t� �
Pocc
k =��

�
k��z; t�rz�k��z; t����F � �k��=�

is the current density. Since there is no dissipation, P�t� is
zero on average, but fluctuates at least twice as fast as d�t�
(it contains a product of two oscillating quantities).

The differences between TDOEP versus AOEP and
TDKLI are much more apparent in P�t� (bottom panels
of Figs. 2–5), in particular, for higher frequencies. At
20 meV Vx� picks up a significant phase shift compared
to AOEP and TDKLI, which themselves are completely in

×

FIG. 3 (color online). Same as Fig. 2, with ! � 20 meV and
I � 20 W=cm2.

×

FIG. 2 (color online). Top: Dipole oscillations driven by an
external field with frequency ! � 11:2 meV and intensity I �
10 W=cm2. Bottom: XC power [Eq. (4)]. Blue, red, green (dark,
medium, light gray): TDOEP, AOEP, TDKLI.

FIG. 1 (color online). Top: dipole moment of free charge-
density oscillations in a quantum well with two occupied sub-
bands [blue, red, green (dark, medium, light gray): TDOEP,
AOEP, TDKLI]. Bottom left: TDOEP dipole power spectrum.
Bottom right: convergence index G (see text).

PRL 100, 056404 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
8 FEBRUARY 2008

056404-3



sync. This is a clear indication of memory-induced elas-
ticity. The effect becomes even more pronounced at 40 and
50 meV. We also find that P�t� exhibits characteristic beat-
ing patterns (in particular at 40 meV), which are due to the
detuning between the driving field and the plasmon reso-
nances. These patterns look similar in AOEP and TDKLI,
but exhibit marked additional structures in TDOEP.
Remarkably, as seen most clearly at 50 meV, these strong
and rapid fluctuations of Vx� in TDOEP leave hardly any
imprint on d�t�.

Conclusion.—We have developed numerical algorithms
for the full TDOEP and its adiabatic approximation, the
AOEP. The role of memory was analyzed for the collective
electron dynamics in quantum wells. Away from reso-
nances, AOEP and TDKLI closely agree (like ground-state
OEP and KLI [14]) and are good approximations to the full
TDOEP. Memory effects become more significant in the
vicinity of intersubband resonances, resulting in additional
elastic contributions to the dynamics.

Exact-exchange TDOEP has no memory at all in sys-
tems with only one occupied level [14], and our quantum
well had only a small population of the second subband.
Nonadiabatic effects should become more important for
larger relative occupancies of upper levels, and in fre-
quency regimes further above the lowest excitations.

Our analysis of the XC power shows that the full
TDOEP has much richer temporal features than the adia-
batic approximations, but this has relatively little impact on
the electron dynamics itself. This suggests that for intrinsi-
cally nonadiabatic phenomena such as multiple excitations
and dissipation one needs to go beyond exact exchange.
Further exploration of orbital functionals thus remains an
important task in TDDFT.
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FIG. 4 (color online). Same as Fig. 2, with ! � 40 meV and
I � 40 W=cm2.
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FIG. 5 (color online). Same as Fig. 2, with ! � 50 meV and
I � 1 kW=cm2.
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