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Most applications of time-dependent density-functional theory �TDDFT� use the adiabatic
local-density approximation �ALDA� for the dynamical exchange-correlation potential Vxc�r , t�. An
exact �i.e., nonadiabatic� extension of the ground-state LDA into the dynamical regime leads to a
Vxc�r , t� with a memory, which causes the electron dynamics to become dissipative. To illustrate and
explain this nonadiabatic behavior, this paper studies the dynamics of two interacting electrons on
a two-dimensional quantum strip of finite size, comparing TDDFT within and beyond the ALDA
with numerical solutions of the two-electron time-dependent Schrödinger equation. It is shown
explicitly how dissipation arises through multiple particle-hole excitations, and how the
nonadiabatic extension of the ALDA fails for finite systems but becomes correct in the
thermodynamic limit. © 2006 American Institute of Physics. �DOI: 10.1063/1.2406069�

I. INTRODUCTION

The essential ingredient of time-dependent density-
functional theory �TDDFT�,1,2 the exchange-correlation �xc�
potential Vxc�r , t�, is frequently obtained using the adiabatic
local-density approximation �ALDA�:

Vxc
ALDA�r,t� = � d�n̄exc�n̄��

dn̄
�

n̄=n�r,t�
, �1�

where exc�n̄� is the xc energy per particle of a homogeneous
electron gas of density n̄. The adiabatic approximation means
that all functional dependence of Vxc�r , t� on prior time-
dependent densities n�r� , t��, t�� t, is ignored. Neglecting
the retardation implies frequency-independent and real xc
kernels in linear response. This approach has been widely
used in quantum chemistry for calculating molecular excita-
tion energies.3

The adiabatic approximation is known to work well for
excitation processes in many-body systems that have a direct
counterpart in the Kohn-Sham system, such as atomic and
molecular single-particle excitations. On the other hand, for
more complicated processes such as double or charge-
transfer excitations, the ALDA can fail dramatically.4,5 A re-
cent study6 has shown that the ALDA can completely break
down in dynamical processes where the electronic density
rapidly undergoes large deformations.

Several recent papers have addressed the question how
the LDA for ground-state calculations should be properly
extended into the dynamical regime.6–12 Vignale and Kohn7

�VK� showed that a nonadiabatic local approximation for
exchange and correlation requires the time-dependent cur-
rent j�r , t� as basic variable �C-TDDFT�. The local
C-TDDFT approximation of VK was later recast in the lan-
guage of hydrodynamics, where xc effects beyond the ALDA
appear as viscoelastic stresses in the electron liquid.9,10 An
alternative nonadiabatic theory formulates TDDFT from the
point of view of an observer in a comoving Lagrangian ref-

erence frame �L-TDDFT�.12 In Ref. 6, the technical details of
C-TDDFT and L-TDDFT �in the VK approximation and in
the local deformation approximation,12 respectively� are
critically examined and compared.

To date, most applications of TDDFT beyond the adia-
batic approximation take place in the frequency-dependent
linear-response regime. A major success of the VK formal-
ism was the work by van Faassen et al.13,14 who calculated
static axial polarizabilities in molecular chains, with much
improvement over the ALDA.

The VK formalism has recently been applied to describe
linear and nonlinear charge-density oscillations in quantum
wells by solving the time-dependent Kohn-Sham �TDKS�
equation.15 It was shown that the retardation caused by the
memory of the xc potential has the striking consequence of
introducing decoherence and energy relaxation, i.e., the os-
cillating density experiences a damping. The mechanism
causing this behavior has been discussed by D’Agosta and
Vignale.16 Technically, dissipation arises in VK theory from
a velocity-dependent xc �vector� potential which breaks the
time-reversal invariance of the TDKS Hamiltonian. As a re-
sult, a system tends to relax from a nonequilibrium initial
state to an equilibrium final state with higher entropy. But
where does the dissipated energy go?

Because the system is closed and isolated �there is no
coupling to a thermal bath�, the total energy should be con-
served. According to Ref. 16, dissipation in C-TDDFT has to
be understood in the sense that energy is redistributed be-
tween two subsystems with different sets of electronic de-
grees of freedom, coupled by Coulomb interactions. In the
discussion of the quantum well examples of Refs. 15 and 16,
the transfer of energy is said to occur from a collective mo-
tion along the confinement direction into low-lying lateral
excitations of the two-dimensional electron gas in the quan-
tum well plane. However, in C-TDDFT this transfer process
is never directly observed, since the TDKS equations are
solved only for the electron dynamics perpendicular to the
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quantum well plane. The damping of collective excitations in
C-TDDFT as well as in the full many-body picture thus
deserves further thought.

The purpose of the present paper is to give an explicit,
pedagogical illustration of the road towards dissipation in
collective electronic motion. We will consider a two-electron
model system that is simple enough so that its dynamics can
be treated numerically exactly via solution of the full time-
dependent Schrödinger equation and compare it with TD-
DFT within and beyond the ALDA. In particular, we will
focus on charge-density oscillations along one direction of
the system, and how the exact calculations show that the
amplitude of these oscillations changes over time. This am-
plitude modulation comes from a superposition of transitions
between the ground state and singly excited states and be-
tween singly and doubly excited states, including a coupling
to the transverse degrees of freedom due to Coulomb inter-
actions.

In ALDA, all effects involving multiple excitations are
completely absent; in C-TDDFT in the local VK approxima-
tion, multiple excitations are implicitly included, but for
finite systems their contribution is strongly exaggerated,
producing an unphysical damping. Based on the insights of
our simple two-electron system, we will discuss how the
dissipative behavior emerges in the thermodynamic �large-
system� limit, and to what extent it is then correctly de-
scribed by the VK formalism.

In Sec. II we give the technical details of our two-
electron model system and describe how the full Schrödinger
equation and the TDKS equations with and without memory
are solved. Section 3 gives our results and discusses the
physical process of dissipation of collective charge-density
oscillations. Conclusions are given in Sec. IV.

II. MODEL SYSTEM

Consider two electrons on a two-dimensional �2D� quan-
tum strip of length L and width �, positioned in the x-z
plane. In the following, we will be mostly interested in situ-
ations where L��. The system has hard-wall boundary con-
ditions at two ends of the strip, at z=0 and z=�, and periodic
boundary conditions along the x direction. In other words,
the electrons are living on a strictly 2D surface whose topol-
ogy is equivalent to that of a cylindrical tube of length � and
circumference L.

On this 2D quantum strip we first calculate the electronic
ground state in the presence of a linear external potential
which depends only on z:

V�z� = Fz , �2�

where F is a constant field strength. At the initial time t=0,
this external potential is suddenly switched off, which trig-
gers a charge-density oscillation along z �see Fig. 1�. The
electronic density thus remains uniform along the x direction
for all times. The goal is to follow the time evolution of the
system for many cycles of the charge-density oscillations,
comparing the exact numerical solution of the two-electron
Schrödinger equation with TDDFT solutions within and be-
yond ALDA. Atomic �Hartree� units are used throughout.

A. Two-electron Schrödinger equation

1. Ground state

The static two-electron Schrödinger equation for our
problem reads

0 = �−
�1

2

2
−

�2
2

2
+ V�z1� + V�z2� +

1

�r1 − r2�
− Ej�

� � j�r1s1,r2s2� , �3�

where r1,2= �x1,2 ,z1,2�, and s1,2 denotes the spin. We expand
the two-electron eigenstates � j in a basis of Slater determi-
nants:

� j�r1s1,r2s2� = 	
�1�2

�1�2

C�1�2�1�2

j ��1�2�1�2
�r1s1,r2s2� , �4�

where

��1�2�1�2
=

1

2

�	�1�1
�x1,z1�
1�s1�	�2�2

�x2,z2�
2�s2�

− 	�2�2
�x1,z1�
2�s1�	�1�1

�x2,z2�
1�s2�� . �5�

Here, 
 are single-particle spinors, and for the spatial part we
choose the noninteracting single-particle wave functions for
constant external potential:

	���x,z� =
 2

L�
exp�2�i�x

L
�sin���z

�
� �6�

with quantum numbers

� = 0, ± 1, ± 2, . . . , �7�

� = 1,2,3, . . . . �8�

In other words, we satisfy the given boundary conditions
�see Fig. 1� by choosing plane-wave basis states along the
strip and standing waves across the strip.

Inserting the basis expansion �Eq. �4�� into the
Schrödinger equation �Eq. �3�� yields the following equation
for the expansion coefficients:

FIG. 1. �Color online� Schematic illustration of 1 cycle of a charge-density
oscillation of a two-electron system on a 2D quantum strip of width � and
length L. Darker areas represent regions of charge accumulation. Snapshots
are shown at times as indicated, where T is the duration of one cycle. The
model assumes periodic boundaries along x and hard-wall boundaries at
z=0 and z=�.
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�1�2

�1�2

��T�1�1
+ T�2�2

���11
��22

��1�1
��2�2

+ �V1�1
��22

+ V2�2
��11

���1�1
��2�2

+ W�1�2�1�2

12�1�2�

�C�1�2�1�2

j = EjC12�1�2

j . �9�

Here and in the following, the indices �1,2 ,�1,2 run over posi-
tive and negative integers including zero, whereas 1,2 ,�1,2

run over positive integers only �see Eqs. �7� and �8��. The
kinetic energy and external potential matrix elements are
given by

T�� =
�2�2

2�2 +
2�2�2

L2 �10�

and

V� =
2

�


0

�

dz sin�̃z�sin��̃z�V�z� , �11�

introducing the abbreviation ̃=� /� and similar for �̃. The
matrix elements of the Coulomb interaction are

W�1�2�1�2

12�1�2 =
4

�2L


0

�

dz1
0

�

dz2 sin�̃1z1�sin�̃2z2�

� sin��̃1z1�sin��̃2z2���1+�2,�1+�2
I�2−�2

�z1,z2� ,

�12�

where

I�−��z1,z2� = 
−�

�

dx
cos�2��� − ��x/L�


x2 + �z1 − z2�2

= 2K0�2�

L
�� − ���z1 − z2��, � � � �13�

=− 2 log�z1 − z2�, � = � . �14�

Here, K0 is a complete Bessel function of the second kind in
standard notation, and in the case �=� an additional diver-
gent term is canceled by the positive background.

Solving Eq. �9� numerically one finds that a relatively
small basis size including states with no more than �= ±10
and �=10 �Eqs. �7� and �8�� is sufficient. The computational
task is therefore quite manageable.

Furthermore, it turns out that, due to symmetry and mo-
mentum conservation, only those two-electron basis states
��1�2�1�2

contribute which have zero net current along the
strip, i.e., only states with �1=−�2 are needed. This corre-
sponds to two-electron states where one electron travels to
the right and the other to the left.

2. Time evolution

Once Eq. �3� has been diagonalized, the next step is to
determine the time evolution of the ground state
�1�r1s1 ,r2s2 , t� after the linear external potential has been
switched off. Rather than explicitly solving the time-

dependent two-electron Schrödinger equation, this is most
easily done by expanding �1 in the complete set of field-free
eigenstates, defined as follows:

�−
�1

2

2
−

�2
2

2
+

1

�r1 − r2�
− Ej

f�� j
f = 0, �15�

� j
f = 	

�1�2

�1�2

C�1�2�1�2

j,f ��1�2�1�2
. �16�

Thus,

�1�t� = 	
j

Aj�t�� j
f , �17�

where

Aj�t� = exp�− iEj
ft� 	

�1�2

�1�2

C�1�2�1�2

j,f C�1�2�1�2

1 . �18�

From this, we obtain the time-dependent density as follows:

n�z,t� = 	
s1s2

 d2r2��1�r1s1,r2s2,t��2

=
2

L�
	

�1�2

�1�2

Q12�1�2
�t��sin�̃1z�sin��̃1z��2,�2

+ sin�̃2z�sin��̃2z��1,�1
� , �19�

where

Q12�1�2
�t� = 	

ij

Ai
*�t�Aj�t� 	

�1�2

C�1�2�1�2

i,f C�1�2�1�2

j,f . �20�

Finally, the time-dependent dipole moment is

d�t� = 
0

�

dz zn�z,t� . �21�

B. TDDFT

1. Ground state

The two-electron problem described above can be
solved, in principle exactly, using the TDKS formalism. We
begin with the static Kohn-Sham �KS� equation:

�−
�2

2
+ V�z� + VH�z� + Vxc�z� − En��n�x,z� = 0. �22�

This equation separates in x and z, and we make the ansatz

�n�x,z� =
1

L

exp�2�i�x

L
�� j�z� , �23�

En =
2�2�2

L2 + � j , �24�

where the index � is given by Eq. �7�. The ground-state
solution has �=0, and we end up having to solve a one-
dimensional equation for � j�z� and � j:
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�−
1

2

d2

dz2 + V�z� + VH�z� + Vxc�z� − � j�� j�z� = 0. �25�

To solve the single-particle KS equation, we expand in a
standing-wave basis as follows:

� j�z� =
 2

�
	
�=1

N

C�
j sin��̃z� , �26�

where

	
�
�n2

2
�� + V� + V�

H + V�
xc �C�

j = � jC
j . �27�

From this, the ground-state density follows as

n�z� =
4

L�
	
�

C
1*C�

1 sin�̃z�sin��̃z� . �28�

The matrix elements for the external, Hartree, and xc poten-
tials are calculated from Eq. �11�. The Hartree potential is
given by

VH�z� = − 2
0

�

dz�n�z��log�z − z�� �29�

plus a diverging constant which is canceled by the positive
background. For the xc potential we use the LDA within the
parametrization of the 2D electron gas of Tanatar and
Ceperley.17 For the �spin-unpolarized� systems under consid-
eration, the more modern parametrization by Attaccalite et
al.18 gives almost identical results.

Figure 2 shows the two-electron ground-state density
n�z� on a 2D quantum strip of width �=10 and length L
=50, in the presence of a linear external potential �Eq. �2��
with field strength F=0.02. For these system parameters, the
2D Wigner-Seitz radius rs= ��n�−1/2 has a value of rs=6 at
the maximum of the density distribution. The agreement be-
tween the exact and the LDA density is reasonably good and
in fact becomes better for smaller quantum strips where the
density is higher. In general, the LDA system is found to be
a little more polarizable than the exact system.

2. Time evolution

Like in the case of the full two-electron Schrödinger
equation, we set the charge-density oscillations in motion by

suddenly switching off the external potential at the initial
time t=0. The task is to solve the TDKS equation

�−
1

2

d2

dz2 + VH�z,t� + Vxc�z,t� − i
�

�t
���z,t� = 0, �30�

with initial condition ��z ,0�=�1�z�. The time-dependent KS
orbital ��z , t� is expanded similar to Eq. �26�, and the time-
dependent expansion coefficients C�t� are numerically
determined using the Crank-Nicholson algorithm plus
predictor-corrector scheme.2

In the following, we will consider Vxc�z , t� within and
beyond the ALDA. In the VK approximation of C-TDDFT,
one obtains an expression for a time-dependent xc potential
with memory, called ALDA+M:6,15

Vxc�z,t� = Vxc
ALDA�z,t� + Vxc

M�z,t� , �31�

with the memory part

Vxc
M�z,t� = − 

0

z dz�

n�z�,t�
�z��xc,zz�z�,t� . �32�

The zz component of the xc stress tensor is given by

�xc,zz�z�,t� = 
0

t

Y�n�z�,t�,t − t���z�vz��z�,t�dt�. �33�

Here, v�z , t�= j�z , t� /n�z , t� is the time-dependent velocity
field, where j�z , t� is the current density. In 2D, the memory
kernel Y is given by

Y�n,t − t�� = xc −
n2

�
 d�

�
Ifxc

L ���cos���t − t��� , �34�

with the 2D xc shear modulus of the electron liquid19

xc = n2�Rfxc
L �0� − �nexc��� �35�

�the prime denotes a derivative with respect to n�. In the
following, we use the Holas-Singwi parametrization for the
longitudinal frequency-dependent xc kernel of the 2D elec-
tron liquid:20

Ifxc
L ��� =

A�

B2 + �2 , �36�

Rfxc
L ��� = f� +

AB

B2 + �2 . �37�

The coefficients A and B are given by

A = −
11�2

32
, �38�

B =
A

�nexc�� − f�

, �39�

with

f� =
1

2n�−
5

2
n2� exc

n
��

+ 12n3/2� exc


n
��� . �40�

It is easy to see that this simple parametrization for fxc
L leads

to zero shear modulus, xc=0. A more sophisticated interpo-

FIG. 2. Two-electron ground-state density n�z� on a quantum strip of width
�=10 and length L=50, with field strength F=0.02. Full line: exact solu-
tion; dashed line: LDA.
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lation formula, with finite xc, has been derived by Qian and
Vignale,19 but its input parameters are currently only avail-
able for a limited range of densities in the metallic regime.
The shear modulus is known to be crucial for obtaining ac-
curate static polarizabilities in polymers.13,14 However, here
we are interested in a dynamical range of the order of the
plasma frequency, and the three-dimensional �3D� study of
Ref. 6 has shown that there is no qualitative, and not much
quantitative, difference in that regime between fxc

L parametri-
zations with zero and finite xc: both capture the mixed
elastic/dissipative behavior of the electron liquid at finite fre-
quencies. For our purposes, it is therefore sufficient, as well
as practically more convenient, to work with the Holas-
Singwi formula �Eq. �36��.

An additional advantage of the Holas-Singwi fxc
L is that it

leads to a very simple expression for the memory kernel:

Y�n,t − t�� = −
An2

B
e−B�t−t��, �41�

i.e., the system experiences an exponential memory loss.
This is similar to what was observed6,15 in 3D systems using
the Gross-Kohn parametrization for fxc

L .21 As a consequence,
the numerical evaluation of the time integral in Eq. �33� can
be simplified by introducing a cutoff in t− t�, i.e., not the
entire history of the system from t=0 onwards needs to be
included.

III. RESULTS AND DISCUSSION

A. Charge-density oscillations

Figures 3 and 4 compare the time-dependent dipole mo-
ment d�t� �Eq. �21�� for quantum strips of width �=10 and
lengths L=50 and L=100, respectively, calculated from the
exact density �Eq. �19�� and from the ALDA density. The

initial state was prepared with an external potential �Eq. �2��
of field strength F=0.02, which was abruptly switched off at
t=0.

At first sight, the ALDA charge-density oscillations seem
to agree well with the exact ones, as far as the frequency and
the average amplitude of d�t� are concerned. On closer ex-
amination, however, we observe a beating pattern in the ex-
act charge-density oscillations, which shows up as a low-
frequency modulation of the amplitude of d�t�. This effect is
not reproduced by the ALDA, which produces a constant
amplitude �we disregard here the small, rapid wiggles in the
amplitudes of d�t�, which are a nonlinear effect caused by the
relatively strong initial field, see Fig. 2�. In the following, we
will focus on discussing the origin of these modulations, and
on the related shortcomings of the ALDA and the conse-
quences thereof. It will turn out that this effect provides a
key to understanding the meaning of dissipation in TDKS
theory.

In Sec. II A 2 we considered the time evolution of the
exact two-electron state and explained how it can be ob-
tained by expanding the time-dependent wave function in the
complete set of field-free eigenstates, see Eq. �17�. For the
system parameters and field strengths under consideration,
this expansion turns out to be dominated by just a few lead-
ing terms in the summation over Aj�t�� j

f. Looking at those
few terms with the largest �Aj�t��2 will give us sufficient in-
formation to understand the electron dynamics leading to the
beating pattern in d�t�.

Let us analyze in detail the case �=10, L=100, and F
=0.02. We have solved the two-electron Schrödinger equa-
tion with 11 plane-wave and 8 standing-wave basis states,
i.e., �� � �5 and ��8 in Eqs. �7� and �8�. Table I shows the
six leading terms in the expansion �Eq. �17�� of ��t� in terms
of field-free eigenstates, i.e., those terms with the largest Aj

2,
and the associated energies Ej, where we define the field-free

FIG. 3. Time-dependent dipole moment d�t� associated with the charge-
density oscillations in a quantum strip of width �=10, length L=50, and
initial field strength F=0.02. Top: exact solution; bottom: ALDA.

FIG. 4. Same as Fig. 3 but for a strip of length L=100.
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ground-state energy to be E1=0. The remaining terms in Eq.
�17� have values of Aj

2 that are orders of magnitude smaller.
According to Eq. �4�, each field-free eigenstate � j

f is
represented as a sum of single-particle Slater determinants.
The leading � j

f are dominated by configurations ��1�2�1�2
whose standing-wave quantum numbers ��1 ,�2� are given in
the second column of Table I and which can have a broad
range of plane waves ��1 ,�2�. This is illustrated in detail in
Fig. 5, which shows histograms of the coefficients
�C�1�2�1�1

j,f �2 in the expansion � j
f =	�1�2

�1�2C�1�2�1�2

j,f ��1�2�1�2
of

the first four leading field-free eigenstates. One can clearly
see that there are dominating pairs of standing-wave quan-
tum numbers ��1 ,�2�, which explains the assignment in the

second column of Table I. Each configuration with standing
waves ��1 ,�2� along z is accompanied by left and right run-
ning waves �� ,−�� along x. The case �=0 is dominant, but
finite � are not negligible.

To understand the beating pattern in the dipole oscilla-
tions of Figs. 3 and 4, we now focus on the first three leading
field-free eigenstates and their standing-wave quantum num-
bers ��1 ,�2�, and for the moment disregard the running
waves along x. The beating pattern essentially arises from a
superposition of two dipole oscillations associated with the
transitions �1,1�→ �1,2� , �2,1� and �1,2� , �2,1�→ �2,2�.
The associated energy differences are E2−E1=�21

=0.148 661 and E3−E2=�32=0.145 873. The two oscillation
frequencies �21 and �32 are very close, and their difference
�21−�32=0.002 788 is precisely the frequency of the ampli-
tude modulation of d�t�. The resulting modulation period is
Tmod=2� / ��21−�32�=2254, which agrees extremely well
with the data shown in Fig. 4. Similarly, for the case L=50
shown in Fig. 3 we find Tmod=964 �here, the difference
�21−�32 is a bit bigger�. The amplitude of the modulations
of d�t� depends on the field strength F and remains small as
long as A1

2 ,A2
2�A3

2.
It is now easy to see why the ALDA misses the beating

pattern in d�t�: the reason is that it does not account for
doubly excited configurations. The ALDA includes only
single excitations, which are the only possible excitations of
the KS system. Thus, transitions involving the ��1 ,�2�
= �2,2� configuration, which are crucial to explaining the
modulation of d�t�, cannot occur, and therefore no superpo-
sition effect takes place.

In addition to the standing-wave double excitations, the
contribution of doubly excited running-wave states �� ,−��
along x are also important. Again, the ALDA only includes
the case �=0 �single excitations along x are not possible due
to momentum conservation�. On the other hand, ignoring the
states �� ,−�� with finite � in the expansion of the full two-
electron wave function would lead to substantially different
energies Ej, and the low-frequency beating pattern of d�t�
would be destroyed.

The exact xc potential �which we will construct in the
next subsection� has to compensate for the absence of mul-
tiple excitations in the TDKS wave function, and it does so
through a nonadiabatic contribution. This is known from
linear-response theory,4 where the xc kernel must have a fre-
quency dependence to describe double excitations.

B. Exact xc potential and time-dependent energy

1. Construction of the exact time-dependent
xc potential

If the density n�r , t� of a system of two electrons in a
singlet state is given, it is a straightforward affair to construct
that xc potential Vxc�r , t� which, when employed in a TDKS
equation, reproduces this density.22 The doubly occupied
TDKS orbital can be written as

FIG. 5. Values of the coefficients �C�1�2�1�2

j,f �2 in the representation � j
f

=	�1�2

�1�2

C�1�2�1�2

j,f ��1�2�1�2
of the first four leading field-free eigenstates �see

Table I�. Each configuration with standing waves ��1 ,�2� along z also has
running waves along x with �� ,−��, where −5���5, shown here as his-
tograms. The dominating configurations are for �=0, but finite � are not
negligible.

TABLE I. Leading terms in expansion �17� of the time-dependent two-
electron wave function ��t� in terms of field-free eigenstates �for a strip
with �=10, L=100, and F=0.02�. ��1 ,�2� indicates the dominating single-
particle configurations �see Fig. 5�.

j ��1 ,�2� Aj
2 Ej

1 �1,1� 0.897 406 0
2 �1,2�, �2,1� 0.098 766 0.148 661
3 �2,2� 0.002 698 0.294 534
4 �1,3�, �3,1� 0.001 008 0.394 043
5 �2,3�, �3,2� 0.000 051 0.542 683
6 �1,4�, �4,1� 0.000 048 0.739 263
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��r,t� =
n�r,t�
2

ei��r,t�, �42�

where the phase � is a real function and related to the current
density as follows:

���r,t� = j�r,t�/n�r,t� . �43�

Inserting ansatz �42� into the TDKS equation, one obtains

Vxc�r,t� = Vxc
stat�r,t� + Vxc

dyn�r,t� . �44�

The first term,

Vxc
stat�r,t� = 1

4�2 ln n�r,t� + 1
8 ��ln n�r,t��2 − V�r,t�

− VH�r,t� , �45�

is identical to the expression for constructing the static xc
potential from a given static two-electron density,23 except
that all quantities are now taken as time dependent. The sec-
ond term,

Vxc
dyn�r,t� = − �̇�r,t� − 1

2 ����r,t��2, �46�

has no static counterpart and is therefore a truly dynamical
contribution.

2. Exact energy of the TDKS system

Let us now consider the time dependence of the total
energy E�t� of our two-electron system. Since we are dealing
with free charge-density oscillations of a finite 2D quantum
strip, i.e., there is no time-dependent external force, the total
energy of the full many-body system must obviously be con-
stant. This is easy to see for the exact time-dependent two-
electron wave function ��t�: according to Eqs. �17� and �18�,
we simply have E�t�=	 jEj for all times.

As long as the external potential V remains static, it is
straightforward to express the constant total energy as a
time-dependent density functional.24 To be as general as pos-
sible, we work within C-TDDFT, where the TDKS Hamil-
tonian is as follows:25,26

ĥ�t� =
1

2
��

i
+

1

c
Axc�r,t��2

+ V�r� + VH�r,t� + Vxc�r,t� ,

�47�

where Axc�r , t� is the xc vector potential. In particular, this
applies for situations where the system evolves from an ini-
tial state that is not the ground state. Formally, the exact
Vxc�r , t� and Axc�r , t� are therefore functionals of not only
the time-dependent density but also of the initial many-body
and KS wave functions.27

Generalizing the work of Hessler et al.28,29 to include the
presence of Axc, one can write for a two-electron system

E = 2 dr�*�r,t��1

2
��

i
+

1

c
Axc�r,t��2

+ V�r����r,t�

+ EH�n�t�� + Exc�t� . �48�

EH�n� is the Hartree energy functional, and the time-
dependent xc energy is defined by Eq. �48�. One finds, using
Eqs. �47� and �48�,

Ėxc�t� = drṅ�r,t�Vxc�r,t� −
1

c
 drj�r,t� · Ȧxc�r,t� .

�49�

In Refs. 28 and 29 the main purpose of introducing time-
dependent energy components was to derive exact conditions
and constraints for the scalar xc potential in TDDFT. It was
found that the time-dependent correlation energy, obtained
from Eq. �49�, can sometimes become positive.

3. The adiabatic energy

To guarantee that the total E, Eq. �48�, is constant, Exc�t�
has to be an extremely complicated functional whose depen-
dence on density and current is nonlocal in space and time,
and which also depends implicitly on the initial KS and
many-body states.

A simple approximation to the time-dependent xc energy
functional is obtained by taking the ground-state xc energy
functional Exc

gs�n� that was used in the calculation of the ini-
tial state for the TDKS time propagation and evaluating it
with the time-dependent density. Making this approximation
in Eq. �48� defines the adiabatic energy Ea�t� which was first
introduced in Ref. 15 and more thoroughly analyzed by
D’Agosta and Vignale.16 For a two-electron KS system with
a doubly occupied single-particle orbital, we thus have

Ea�t� = 2 dr�*�r,t��1

2
��

i
+

1

c
Axc�r,t��2

+ V�r����r,t� + EH�n�t�� + Exc
gs�n�t�� . �50�

Clearly, Ea�t� is not equal to the true total energy �which
should be constant�, but, just as the exact E from Eq. �48�, it
reduces to the ground-state energy in the static limit. One
finds that the rate of change of the adiabatic energy is

Ėa�t� =
1

c
 drj�r,t� · Ȧxc�r,t� . �51�

D’Agosta and Vignale16 proved that Ea�t� decreases mono-
tonically in the absence of an external driving field when the
VK expression is used for Axc, which indicates that the sys-
tem is irreversibly driven to equilibrium.

In the case of our 2D quantum strip, the density is spa-
tially inhomogeneous along the z direction only, which
means that we can replace the xc vector potential by the
dynamical scalar potential using the relation

1

c
Ȧxc�r,t� = − �Vxc

dyn�r,t� . �52�

Furthermore, the z components of the physical current jz�z , t�
and the KS current jKS,z�z , t�=2I��*d� /dz� of this particular
two-electron system become identical. Therefore, we obtain

Ėa�t� = − L
0

�

dzjz�z,t�
d

dz
Vxc

dyn�z,t� . �53�

This shows that the rate of change of the adiabatic energy is
determined by the work done by the forces associated with
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the dynamical xc potential. Thus, the adiabatic energy is a
useful tool to analyze dissipation in TDDFT.

In the case where we start from the exact time-dependent
density and ask what the associated exact adiabatic energy is,
a direct evaluation of expression �50� is not possible, since
one does not know the form of the exact xc energy func-
tional. Fortunately, the adiabatic energy can easily be ob-
tained from Eq. �53� through a simple time integration:

Ea�t�=�0
t Ėa�t��dt�. This is a very convenient way of deter-

mining the exact adiabatic energy �up to an irrelevant con-
stant� from the exact density.

We have calculated Ea�t� for the exact solutions of the
charge-density oscillations for the 2D quantum strips with
L=50 and L=100; see top parts of Figs. 3 and 4. As ex-
pected, the exact adiabatic energy is not constant but rather
rapidly fluctuates with time. For the sake of clarity, and since
these rapid fluctuations are not what we are primarily inter-

ested in, we define a cycle-averaged adiabatic energy Ēa�t�,
which is obtained by averaging the adiabatic energy at each
time t over a time window of one period of the charge-
density oscillation �duration �40 a.u.�.

Figure 6 shows the adiabatic energy for the two quantum
strips, calculated with different methods �both the ALDA and
ALDA+M energies have been directly determined from Eq.
�50�; the ALDA+M results will be discussed in the next
subsection�. One clearly sees slow oscillations of the exact

Ēa�t� with the same period as the amplitude modulations of
d�t� �see Figs. 3 and 4�. By contrast, Ea�t� in ALDA is con-
stant as expected, since the ALDA dipole amplitudes are not
modulated.

These results provide some interesting insights into TD-
DFT. It follows from the Runge-Gross theorem1 that there

exists a unique TDKS system which reproduces any �reason-
ably well-behaved� time-dependent density n�r , t� of a many-
body system. In particular, if the exact functional for the xc
potential Vxc�r , t� is used, the TDKS system gives the exact
time-dependent density. However, the adiabatic energy �as
defined above� is not required to remain constant like the
true energy of the many-particle system �in the absence of a
time-dependent external field, of course�.

How does this happen in our 2D model system? The
exact TDKS system has to somehow reproduce the ampli-
tude modulations of the time-dependent dipole moment, but
it cannot do so through a simple superposition of oscillations
associated with single and double excitations, as it happens
in the full two-electron Schrödinger equation: there are no
double excitations in the TDKS system. Instead, the TDKS
system has to produce the beating pattern in d�t� through the
action of the xc potential. In other words, the dynamical part
of the xc potential, Vxc

dyn, acts in a sense like an “external”
potential which alternatingly drives and suppresses the
charge-density oscillations of the system in order to increase
or diminish the amplitude of d�t�. The periodic fluctuations
of the adiabatic energy Ea�t� serve as an indicator for this
behavior.

C. Memory effects and dissipation

In the previous subsections, we have seen that the ALDA
fails to reproduce some key features of the dynamics of the
two-electron system, related to the fact that it misses the
double excitations. We have also seen that the exact xc po-
tential makes up for this through nonadiabatic contributions.
Let us now see how the nonadiabatic ALDA+M approxima-
tion of C-TDDFT performs, which was described in Sec.
II B 2.

Figure 7 shows the time-dependent dipole moment for

FIG. 6. Full lines: cycle-averaged adiabatic energy Ēa�t� for the exact solu-
tions of the charge-density oscillations on the 2D quantum strip with
L=50 �top� and L=100 �bottom�. Short and long dashed lines: Ea�t� calcu-
lated with ALDA and ALDA+M. For clarity, all energies are shifted so that
they initially coincide.

FIG. 7. Time-dependent dipole moment calculated with ALDA+M for
the same chargedensity oscillations treated in Figs. 3 and 4. Upper panel:
L=50; lower panel: L=100.
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the charge-density oscillations of the same 2D quantum
strips discussed above but now calculated using the nonadia-
batic ALDA+M xc potential �Eq. �31��. In both cases, the
dipole oscillations are exponentially damped, similar to what
was previously observed for plasmon oscillations in a semi-
conductor quantum well.15 Representing the dipole moment
as d�t��d0 cos��t�e−�t, we find a damping rate of about �
=0.0007 for the L=50 strip and �=0.000 55 for the L=100
strip. As expected, the system with L=100 has a somewhat
weaker damping, due to its lower particle density, which re-
duces the probability of electron-electron scattering.

The long dashed lines in Fig. 6 show the adiabatic en-
ergy Ea�t�, calculated with ALDA+M. In both quantum strip
systems, the energy is dissipated at an exponential rate,
Ea�t�=Ea�0�e−2�t. As discussed in the previous subsection,
the exact adiabiatic energy oscillates, but on average there is
no dissipation. These results clearly show that the nonadia-
batic ALDA+M functional fails for our finite two-electron
system. It results in an unphysical damping of the charge-
density oscillations.

Technically, the dissipation arises from the fact that Vxc
M

is a velocity-dependent potential. As was discussed in Ref. 6,
the history dependence of Vxc

M, which is governed by the
memory kernel Y�n , t− t��, is such that it accounts for both
dissipative and elastic properties of the electron liquid. The
microscopic properties of the many-body system enter
through the frequency-dependent xc kernel of the homoge-
neous electron gas, fxc���. This function describes dynamical
processes of the homogeneous electron gas that go beyond
single-particle excitations, i.e., fxc��� contains the physics of
multiple particle-hole excitations. In principle, this should be
a good thing, since we have seen from our model that the
main defect of the ALDA is the absence of double excita-
tions. But in spite of this, the ALDA+M does not work in
our system. How can one understand this? An answer will
emerge from a discussion of the thermodynamic limit in the
following subsection.

D. Thermodynamic limit

The central reason for the failure of the ALDA+M for
finite systems is the fact that it is based on the homogeneous
electron gas, i.e., a reference system of infinite extent. Recall
that the ALDA+M functional �Eq. �31�� originates from the
VK formalism, which expresses the xc vector potential as a
functional of the local density and velocity field, using the xc
viscosity coefficients of the homogeneous electron liquid.
Thus, even though the ALDA+M xc scalar potential is a
nonlocal functional of the density �Eq. �32�� and thus sensi-
tive to the size of the system under study, the VK approach
implies that exchange and correlation are treated locally as if
the system were infinite.

In our case of the 2D quantum strip, the currents flow
only along the z direction, and the density is independent of
x. Thus, Vxc

M�z , t� as well as the exact Vxc�z , t� are independent
of x. However, in contrast to the exact xc potential, Vxc

M�z , t�
cannot distinguish between a finite and an infinite quantum
strip, as long as the density n�z , t� across the strip is the same
in both systems.

We can carry out the thought experiment of increasing
the length L of the strip and simultaneously adding electrons
to keep the same n�z , t� as for the two-electron system. The
ALDA and the ALDA+M xc potentials would be un-
changed, likewise the Hartree potential, and we would find
exactly the same charge-density oscillations across the strip.
In particular, the damping in ALDA+M would be the same,
irrespective of the length of the strip.

On the other hand, the dynamics of the exact many-body
system will change dramatically if we increase both L and
the particle number. The time-dependent many-body wave
function will contain not only single and double excitations
but a vast number of multiple excitations. The density of
levels in the excitation spectrum will grow and eventually
turn into a continuum. Recall that for the two-electron sys-
tem, we explained the periodic amplitude modulation of the
charge-density oscillation through a superposition of two fre-
quencies associated with the dominant single and double ex-
citations. If the system size grows, many more such transi-
tions will play a role, and we will have to form a coherent
superposition of many close-lying oscillators. The resulting
beating pattern will become more complex and seem difficult
to predict.

However, we can get a clue from comparing the cases of
L=50 and L=100. For the longer strip, the modulation pe-
riod increases, i.e., the recurrence time becomes longer. In
the limit of infinite system size, this suggests that the recur-
rence time will in fact become infinite. In other words, the
charge-density oscillations will be irreversibly damped.

But where does the energy go? Since the purely elec-
tronic damping that we consider here can be viewed as a beat
with infinite recurrence time, the energy is not lost but re-
mains in the system. In the free charge-density oscillations
under study, the wave function can be expressed as a linear
superposition of field-free many-body states, each of which
carries a time-dependent phase exp�−iEj

ft� �this is a generali-
zation of Eq. �17� to N particles�. Thus, the energy is, from
the very beginning when the oscillation is triggered, shared
in a fixed manner among all excited-state configurations that
make up the time-dependent many-body wave function. In
turn, the charge-density oscillation is a coherent superposi-
tion of a continuum of single and multiple particle-hole ex-
citations, which steadily run out of phase. This reduces the
amplitude of the collective mode due to destructive interfer-
ence.

To give a simple illustration, consider the case of an
exponential damping of the time-dependent dipole moment,
d�t�=d0 cos��t�e−�t. We can carry out a Fourier analysis of
the spectral content of d�t�, and the result is that d�t� arises
from a superposition of a continuum of oscillators whose
frequency distribution has a Lorentzian shape of half-width
� centered around �.

We thus see that the unphysical damping of the ALDA
+M in finite systems derives from the coupling of the col-
lective electron dynamics to continua of multiple particle-
hole excitations; these continua are implicitly contained in
the viscosity coefficients of the homogeneous electron liquid,
which are evaluated for the local density at each point. For a
physically accurate description of finite systems, where the
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excitation spectrum is discrete, no such coupling to particle-
hole continua should occur.

On the other hand, the VK formalism of C-TDDFT, per
construction, becomes exact in the limit of an extended sys-
tem whose ground-state density, as well as the inhomogene-
ity of the time-dependent perturbation, slowly varies in
space.7,9,10 For such a system, the damping of the plasmon
amplitude will be correctly described. In the many-body sys-
tem, the damping occurs directly through interference within
the continuum of multiple excitations, but in C-TDDFT, it
has to happen in a more indirect way, since the coupling to
the local electron-hole continua is only implicit in the xc
viscosity coefficients. In practice, one finds that the nonadia-
batic piece of the xc potential acts like an external damping
force. The outcome, i.e., the behavior of the time-dependent
density n�z , t�, is the same.

IV. CONCLUSION

We have presented a simple two-electron system which
has the appealing feature of being exactly solvable with
modest computational cost and rich enough to provide new
insight into the problem of dissipation of collective electron
dynamics. From the point of view of the exact time-
dependent many-body wave function, plasmon dissipation
occurs through a superposition of a continuum of oscillators,
associated with transitions between multiply excited states,
which slowly and irreversibly run out of phase. The phenom-
enon can be viewed like a beat, but with an infinitely long
recurrence time. Consequently, there is no loss of energy in
the many-body system, and in a sense, not even a redistribu-
tion into other degrees of freedom.

From a TDDFT point of view, all we can say is that we
have a time-dependent density which produces a time-
dependent dipole moment whose amplitude steadily de-
creases. The exact TDKS system accomplishes this through a
nonadiabatic xc potential which acts like a damping force.
As a result, adiabatic energy of the system is lost, but this is
the price we have to pay to reproduce the exact density.

The ALDA+M xc functional of C-TDDFT has been
constructed for infinite systems and becomes exact in the
appropriate limits.7 For finite systems, it introduces a spuri-
ous damping of electron dynamics. For example, if the
method is applied to atoms, one obtains excitation energies
with finite linewidths.30 On the other hand, the static limit of
the VK functional7 seems to work well for polarizabilities of
polymers.13,14 Thus, more tests of C-TDDFT are needed to
explore its usefulness for practical applications.

However, it seems unlikely that a time-dependent xc
functional based on the homogeneous electron gas can cor-
rectly describe the subtle aspects of the dynamics of both

finite and extended systems that we have discussed in this
paper. A more promising approach may be through orbital-
based functionals such as the time-dependent optimized ef-
fective potential,31 which will be the subject of future stud-
ies.
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