87 research outputs found
Multisite Binding of a General Anesthetic to the Prokaryotic Pentameric Erwinia chrysanthemi Ligand-gated Ion Channel (ELIC)
Pentameric ligand-gated ion channels (pLGICs), such as nicotinic acetylcholine, glycine, γ-aminobutyric acid GABAA/C receptors, and the Gloeobacter violaceus ligand-gated ion channel (GLIC), are receptors that contain multiple allosteric binding sites for a variety of therapeutics, including general anesthetics. Here, we report the x-ray crystal structure of the Erwinia chrysanthemi ligand-gated ion channel (ELIC) in complex with a derivative of chloroform, which reveals important features of anesthetic recognition, involving multiple binding at three different sites. One site is located in the channel pore and equates with a noncompetitive inhibitor site found in many pLGICs. A second transmembrane site is novel and is located in the lower part of the transmembrane domain, at an interface formed between adjacent subunits. A third site is also novel and is located in the extracellular domain in a hydrophobic pocket between the β7–β10 strands. Together, these results extend our understanding of pLGIC modulation and reveal several specific binding interactions that may contribute to modulator recognition, further substantiating a multisite model of allosteric modulation in this family of ion channels
AChBP-targeted α-conotoxin correlates distinct binding orientations with nAChR subtype selectivity
Neuronal nAChRs are a diverse family of pentameric ion channels with wide distribution throughout cells of the nervous and immune systems. However, the role of specific subtypes in normal and pathological states remains poorly understood due to the lack of selective probes. Here, we used a binding assay based on acetylcholine-binding protein (AChBP), a homolog of the nicotinic acetylcholine ligand-binding domain, to discover a novel α-conotoxin (α-TxIA) in the venom of Conus textile. α-TxIA bound with high affinity to AChBPs from different species and selectively targeted the α3β2 nAChR subtype. A co-crystal structure of Ac-AChBP with the enhanced potency analog TxIA(A10L), revealed a 20° backbone tilt compared to other AChBP–conotoxin complexes. This reorientation was coordinated by a key salt bridge formed between Arg5 (TxIA) and Asp195 (Ac-AChBP). Mutagenesis studies, biochemical assays and electrophysiological recordings directly correlated the interactions observed in the co-crystal structure to binding affinity at AChBP and different nAChR subtypes. Together, these results establish a new pharmacophore for the design of novel subtype-selective ligands with therapeutic potential in nAChR-related diseases
Morphine metabolism, transport and brain disposition
The chemical structures of morphine and its metabolites are closely related to the clinical effects of drugs (analgesia and side-effects) and to their capability to cross the Blood Brain Barrier (BBB). Morphine-6-glucuronide (M6G) and Morphine-3-glucuronide (M3G) are both highly hydrophilic, but only M6G can penetrate the BBB; accordingly, M6G is considered a more attractive analgesic than the parent drug and the M3G. Several hypotheses have been made to explain these differences. In this review we will discuss recent advances in the field, considering brain disposition of M6G, UDP-glucoronosyltransferases (UGT) involved in morphine metabolism, UGT interindividual variability and transport proteins
Ligand-binding domain subregions contributing to bimodal agonism in cyclic nucleotide–gated channels
Cyclic nucleotide–gated (CNG) channels bind cGMP or cAMP in a cytoplasmic ligand–binding domain (BD), and this binding typically increases channel open probability (Po) without inducing desensitization. However, the catfish CNGA2 (fCNGA2) subtype exhibits bimodal agonism, whereby steady-state Po increases with initial cGMP-binding events (“pro” action) up to a maximum of 0.4, but decreases with subsequent cGMP-binding events (“con” action) occurring at concentrations >3 mM. We sought to clarify if low pro-action efficacy was either necessary or sufficient for con action to operate. To find BD residues responsible for con action or low pro-action efficacy or both, we constructed chimeric CNG channels: subregions of the fCNGA2 BD were substituted with corresponding sequence from the rat CNGA4 BD, which does not support con action. Constructs were expressed in frog oocytes and tested by patch clamp of cell-free membranes. For nearly all BD elements, we found at least one construct where replacing that element preserved robust con action, with a ratio of steady-state conductances, g(10 mM cGMP)/g(3 mM cGMP) < 0.75. When all of the BD sequence C terminal of strand β6 was replaced, g(10 mM cGMP)/g(3 mM cGMP) was increased to 0.95 ± 0.05 (n = 7). However, this apparent attenuation of con action could be explained by an increase in the efficacy of pro action for all agonists, controlled by a conserved “phosphate-binding cassette” motif that contacts ligand; this produces high Po values that are less sensitive to shifts in gating equilibrium. In contrast, substituting a single valine in the N-terminal helix αA abolished con action (g(30 mM cGMP)/g(3 mM cGMP) increased to 1.26 ± 0.24; n = 7) without large increases in pro-action efficacy. Our work dissociates the two functional features of low pro-action efficacy and con action, and moreover identifies a separate structural determinant for each
Molecular dynamics simulations and drug discovery
This review discusses the many roles atomistic computer simulations of macromolecular (for example, protein) receptors and their associated small-molecule ligands can play in drug discovery, including the identification of cryptic or allosteric binding sites, the enhancement of traditional virtual-screening methodologies, and the direct prediction of small-molecule binding energies. The limitations of current simulation methodologies, including the high computational costs and approximations of molecular forces required, are also discussed. With constant improvements in both computer power and algorithm design, the future of computer-aided drug design is promising; molecular dynamics simulations are likely to play an increasingly important role
Identification of a Negative Allosteric Site on Human α4β2 and α3β4 Neuronal Nicotinic Acetylcholine Receptors
Acetylcholine-based neurotransmission is regulated by cationic, ligand-gated ion channels called nicotinic acetylcholine receptors (nAChRs). These receptors have been linked to numerous neurological diseases and disorders such as Alzheimer's disease, Parkinson's disease, and nicotine addiction. Recently, a class of compounds has been discovered that antagonize nAChR function in an allosteric fashion. Models of human α4β2 and α3β4 nicotinic acetylcholine receptor (nAChR) extracellular domains have been developed to computationally explore the binding of these compounds, including the dynamics and free energy changes associated with ligand binding. Through a blind docking study to multiple receptor conformations, the models were used to determine a putative binding mode for the negative allosteric modulators. This mode, in close proximity to the agonist binding site, is presented in addition to a hypothetical mode of antagonism that involves obstruction of C loop closure. Molecular dynamics simulations and MM-PBSA free energy of binding calculations were used as computational validation of the predicted binding mode, while functional assays on wild-type and mutated receptors provided experimental support. Based on the proposed binding mode, two residues on the β2 subunit were independently mutated to the corresponding residues found on the β4 subunit. The T58K mutation resulted in an eight-fold decrease in the potency of KAB-18, a compound that exhibits preferential antagonism for human α4β2 over α3β4 nAChRs, while the F118L mutation resulted in a loss of inhibitory activity for KAB-18 at concentrations up to 100 µM. These results demonstrate the selectivity of KAB-18 for human α4β2 nAChRs and validate the methods used for identifying the nAChR modulator binding site. Exploitation of this site may lead to the development of more potent and subtype-selective nAChR antagonists which may be used in the treatment of a number of neurological diseases and disorders
Probing the bradycardic drug binding receptor of HCN-encoded pacemaker channels
If (or Ih), encoded by the hyperpolarization-activated, cyclic nucleotide-gated (HCN1–4) channel gene family, contributes significantly to cardiac pacing. Bradycardic agents such as ZD7288 that target HCN channels have been developed, but the molecular configuration of their receptor is poorly defined. Here, we probed the drug receptor by systematically introducing alanine scanning substitutions into the selectivity filter (C347A, I348A, G349A, Y350A, G351A in the P-loop), outer (P355A, V356A, S357A, M358A in the P-S6 linker), and inner (M377A, F378A, V379A in S6) pore vestibules of HCN1 channels. When heterologously expressed in human embryonic kidney 293 cells for patch-clamp recordings, I348A, G349A, Y350A, G351A, P355A, and V356A did not produce measurable currents. The half-blocking concentration (IC50) of wild type (WT) for ZD7288 was 25.8 ± 9.7 μM. While the IC50 of M358A was identical to WT, those of C347A, S357A, F378A, and V379A markedly increased to 137.6 ± 56.4, 113.3 ± 34.1, 587.1 ± 167.5, and 1726.3 ± 673.4 μM, respectively (p < 0.05). Despite the proximity of the S6 residues studied, M377A was hypersensitive (IC50 = 5.1 ± 0.7 μM; p < 0.05) implicating site specificity. To explore the energetic interactions among the S6 residues, double and triple substitutions (M377A/F378A, M377A/V379A, F378A/V379A, and M377A/F378A/V379A) were generated for thermodynamic cycle analysis. Specific interactions with coupling energies (ΔΔG) >1 kT for M377–F378 and F378–V379 but not M377–V379 were identified. Based on these new data and others, we proposed a refined drug-blocking model that may lead to improved antiarrhythmics and bioartificial pacemaker designs
Hyperpolarization-activated and cyclic nucleotide-gated channels are differentially expressed in juxtaglomerular cells in the olfactory bulb of mice
In the olfactory bulb, input from olfactory receptor neurons is processed by neuronal networks before it is relayed to higher brain regions. In many neurons, hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels generate and control oscillations of the membrane potential. Oscillations also appear crucial for information processing in the olfactory bulb. Four channel isoforms exist (HCN1–HCN4) that can form homo- or heteromers. Here, we describe the expression pattern of HCN isoforms in the olfactory bulb of mice by using a novel and comprehensive set of antibodies against all four isoforms. HCN isoforms are abundantly expressed in the olfactory bulb. HCN channels can be detected in most cell populations identified by commonly used marker antibodies. The combination of staining with marker and HCN antibodies has revealed at least 17 different staining patterns in juxtaglomerular cells. Furthermore, HCN isoforms give rise to an unexpected wealth of co-expression patterns but are rarely expressed in the same combination and at the same level in two given cell populations. Therefore, heteromeric HCN channels may exist in several cell populations in vivo. Our results suggest that HCN channels play an important role in olfactory information processing. The staining patterns are consistent with the possibility that both homomeric and heteromeric HCN channels are involved in oscillations of the membrane potential of juxtaglomerular cells
Crystal structures of Lymnaea stagnalis AChBP in complex with neonicotinoid insecticides imidacloprid and clothianidin
Neonicotinoid insecticides, which act on nicotinic acetylcholine receptors (nAChRs) in a variety of ways, have extremely low mammalian toxicity, yet the molecular basis of such actions is poorly understood. To elucidate the molecular basis for nAChR–neonicotinoid interactions, a surrogate protein, acetylcholine binding protein from Lymnaea stagnalis (Ls-AChBP) was crystallized in complex with neonicotinoid insecticides imidacloprid (IMI) or clothianidin (CTD). The crystal structures suggested that the guanidine moiety of IMI and CTD stacks with Tyr185, while the nitro group of IMI but not of CTD makes a hydrogen bond with Gln55. IMI showed higher binding affinity for Ls-AChBP than that of CTD, consistent with weaker CH–π interactions in the Ls-AChBP–CTD complex than in the Ls-AChBP–IMI complex and the lack of the nitro group-Gln55 hydrogen bond in CTD. Yet, the NH at position 1 of CTD makes a hydrogen bond with the backbone carbonyl of Trp143, offering an explanation for the diverse actions of neonicotinoids on nAChRs
- …