1,718 research outputs found
Mapping Itinerant Electrons around Kondo Impurities
We investigate single Fe and Co atoms buried below a Cu(100) surface using
low temperature scanning tunneling spectroscopy. By mapping the local density
of states of the itinerant electrons at the surface, the Kondo resonance near
the Fermi energy is analyzed. Probing bulk impurities in this well-defined
scattering geometry allows separating the physics of the Kondo system and the
measuring process. The line shape of the Kondo signature shows an oscillatory
behavior as a function of depth of the impurity as well as a function of
lateral distance. The oscillation period along the different directions reveals
that the spectral function of the itinerant electrons is anisotropic.Comment: 5 pages, 4 figures, accepted by Physical Review Letter
Development of a Non-Iterative Balance Load Prediction Algorithm for the NASA Ames Unitary Plan Wind Tunnel
A non-iterative load prediction algorithm for strain-gage balances was developed for the NASA Ames Unitary Plan Wind Tunnels that computes balance loads from the electrical outputs of the balance bridges and a set of state variables. A state variable could be, for example, a balance temperature difference or the bellows pressure of a flow-through balance. The algorithm directly uses regression models of the balance loads for the load prediction that were obtained by applying global regression analysis to balance calibration data. This choice greatly simplifies both implementation and use of the load prediction process for complex balance configurations as no load iteration needs to be performed. The regression model of a balance load is constructed by using terms from a total of nine term groups. Four term groups are derived from a Taylor Series expansion of the relationship between the load, gage outputs, and state variables. The remaining five term groups are defined by using absolute values of the gage outputs and state variables. Terms from these groups should only be included in the regression model if calibration data from a balance with known bi-directional outputs is analyzed. It is illustrated in detail how global regression analysis may be applied to obtain the coefficients of the chosen regression model of a load component assuming that no linear or massive near-linear dependencies between the regression model terms exist. Data from the machine calibration of a six-component force balance is used to illustrate both application and accuracy of the non-iterative load prediction process
Race and Gender in Modern Western Warfare
This book fills a gap in the historiographical and theoretical fields of race, gender, and war. In brief, Race and Gender in Modern Western Warfare (RGMWW) offers an introduction into how cultural constructions of identity are transformed by war and how they in turn influence the nature of military institutions and conflicts. Focusing on the modern West, this project begins by introducing the contours of race and gender theories as they have evolved and how they are employed by historians, anthropologists, sociologists, and other scholars. The project then mixes chronological narrative with analysis and historiography as it takes the reader through a series of case studies, ranging from the early nineteenth century to the Global War of Terror. The purpose throughout is not merely to create a list of so-called "great moments" in race and gender, but to create a meta-landscape in which readers can learn to identify for themselves the disjunctures, flaws, and critical synergies in the traditional memory and history of a largely monochrome and male-exclusive military experience. The final chapter considers the current challenges that Western societies, particularly the United States, face in imposing social diversity and tolerance on statist military structures in a climates of sometimes vitriolic public debate. RGMWW represents our effort to blend race, gender, and military war, to problematize these intersections, and then provide some answers to those problems
Influence of Strain-Gage Balance Characteristics on the Precision Error of the Drag Coefficient
Improvements and results of a new method are presented that computes a pre-test estimate of the precision error of the drag coefficient of a wind tunnel model. The error estimate is defined as the part of the drag coefficient's precision error that is primarily associated with the precision error of the angle of attack measurement and physical characteristics of the chosen strain-gage balance. The method indirectly describes the precision error of the angle of attack measurement by using an assumed balance gage output variation of one microV/V. The physical characteristics of the balance, on the other hand, are described by partial derivatives of the axial and normal forces with respect to the strain-gage outputs. These derivatives can directly be obtained from the data reduction matrix of the balance. The precision error estimate itself is calculated by applying a simple explicit equation that uses the model reference area, the dynamic pressure, the angle of attack, the coefficients of the linear terms of the data reduction matrix, and the electrical output variation of one microvolt per volt as input. Precision errors at constant angle of attack may be visualized as contour plots by plotting them, for example, versus the Mach number and the total pressure. Characteristics of NASA's MC60E balance are used in combination with the reference area of a generic wind tunnel model in order to demonstrate that error estimates are independent of both the balance load format and the units chosen for the description of balance loads, model reference area, and the dynamic pressure. Finally, experimental data from a wind tunnel test of the Ames Check Standard Model in the NASA Ames 11-foot Transonic Wind Tunnel illustrates the application of the method to real-world test data
The Influence of Heart and Lung Dynamics on the Impedance Cardiogram — A Simulative Analysis
Impedance cardiography (ICG) is a simple and cheap method for acquiring hemodynamic parameters. Unfortunately, not all physiological influences on the ICG signal have yet been identified. In this work, the influence of heart and lung dynamics is analyzed using a simplified model of the human thorax with high temporal resolution. Simulations are conducted using the finite integration technique (FIT) with temporal resolution of 103 Hz. It is shown that changes in heart volume as well as conductivity changes of the lung have a high impact on the ICG signal, if analyzed separately. Considering the sum signal of both physiological sources, it can be shown that they compensate each other and thus do not contribute to the signal. This finding supports Kubicek’s model
Modelling aspects of oviduct fluid formation in vitro
© 2017 Society for Reproduction and Fertility. Oviduct fluid is the microenvironment that supports early reproductive processes including fertilisation, embryo cleavage and genome activation. However, the composition and regulation of this critical environment remain rather poorly defined. This study uses an in vitro preparation of the bovine oviduct epithelium to investigate the formation and composition of in vitro-derived oviduct fluid (ivDOF) within a controlled environment. We confirm the presence of oviduct-specific glycoprotein 1 in ivDOF and show that the amino acid and carbohydrate content resembles that of previously reported in vivo data. In parallel, using a different culture system, a panel of oviduct epithelial solute carrier genes and the corresponding flux of amino acids within ivDOF in response to steroid hormones were investigated. We next incorporated fibroblasts directly beneath the epithelium. This dual culture arrangement represents more faithfully the in vivo environment and impacts on ivDOF composition. Lastly, physiological and pathophysiological endocrine states were modelled and their impact on the in vitro oviduct preparation was evaluated. These experiments help clarify the dynamic function of the oviduct in vitro and suggest a number of future research avenues, such as investigating epithelial-fibroblast interactions, probing the molecular aetiologies of subfertility and optimising embryo culture media
Evidence for charge orbital and spin stripe order in an overdoped manganite
We present diffraction data on a single-layered manganite
La(0.42)Sr(1.58)MnO4 with hole doping (x>0.5). Overdoped La(0.42)Sr(1.58)MnO4
exhibits a complex ordering of charges, orbitals and spins. Single crystal
neutron diffraction experiments reveal three incommensurate and one
commensurate order parameters to be tightly coupled. The position and the shape
of the distinct superstructure scattering points to a stripe arrangement in
which ferromagnetic zigzag chains are disrupted by additional Mn4+ stripes
Improvement in the decadal prediction skill of the North Atlantic extratropical winter circulation through increased model resolution
In this study the latest version of the MiKlip decadal hindcast system is analyzed, and the effect of an increased horizontal and vertical resolution on the prediction skill of the extratropical winter circulation is assessed. Four different metrics – the storm track, blocking, cyclone and windstorm frequencies – are analyzed in the North Atlantic and European region. The model bias and the deterministic decadal hindcast skill are evaluated in ensembles of five members in a lower-resolution version (LR, atm: T63L47, ocean: 1.5∘ L40) and a higher-resolution version (HR, atm: T127L95, ocean: 0.4∘ L40) of the MiKlip system based on the Max Planck Institute Earth System model (MPI-ESM). The skill is assessed for the lead winters 2–5 in terms of the anomaly correlation of the quantities' winter averages using initializations between 1978 and 2012. The deterministic predictions are considered skillful if the anomaly correlation is positive and statistically significant. While the LR version shows common shortcomings of lower-resolution climate models, e.g., a storm track that is too zonal and southward displaced as well as a negative bias of blocking frequencies over the eastern North Atlantic and Europe, the HR version counteracts these biases. Cyclones, i.e., their frequencies and characteristics like strength and lifetime, are particularly better represented in HR. As a result, a chain of significantly improved decadal prediction skill between all four metrics is found with the increase in the spatial resolution. While the skill of the storm track is significantly improved primarily over the main source region of synoptic activity – the North Atlantic Current – the other extratropical quantities experience a significant improvement primarily downstream thereof, i.e., in regions where the synoptic systems typically intensify. Thus, the skill of the cyclone frequencies is significantly improved over the central North Atlantic and northern Europe, the skill of the blocking frequencies is significantly improved over the Mediterranean, Scandinavia and eastern Europe, and the skill of the windstorms is significantly improved over Newfoundland and central Europe. Not only is the skill improved with the increase in resolution, but the HR system itself also exhibits significant skill over large areas of the North Atlantic and European sector for all four circulation metrics. These results are particularly promising regarding the high socioeconomic impact of European winter windstorms and blocking situations
- …