55 research outputs found

    A herbicide resistance risk matrix

    Get PDF
    Herbicide resistance is of increasing concern, especially as there is a lack of new modes of action. An assessment of resistance risk has been a key part of the pesticide authorisation process in most European countries since the early 2000's. However, little guidance is provided on how to quantify these risks. The risk matrix described here presents a quantitative approach to the evaluation of the resistance risk posed by the use of herbicides. The inherent, ‘unmodified’ risk is first assessed by ranking herbicides and major target weed species on a scale from low to high resistance risk, based largely on published information. In practice, agronomic management practices (‘modifiers’) will reduce the risk and these are factored into the matrix. Modifiers can include management strategies relating to herbicide use as well as non-chemical methods of weed control. By assigning defined impact factors to possible agronomic modifiers, the overall resistance risk of a herbicide under defined use conditions can be quantified. The approach, although simple, appears robust and produces realistic assessments of the resistance risks associated with four contrasting test scenarios. The aim is to achieve a better harmonisation of herbicide resistance risk assessment across Europe. Although the matrix has a European legislative focus, the approach and principles are relevant in other parts of the world where the extensive use of herbicides is a relatively recent development, and where there is currently limited knowledge and expertise on herbicide resistance and the evaluation of resistance risks.&nbsp

    The utility of the “Arable Weeds and Management in Europe” database: Challenges and opportunities of combining weed survey data at a European scale

    Get PDF
    Over the last 30 years many studies have surveyed weed vegetation on arable land. The “Arable Weeds and Management in Europe” (AWME) database is a collection of 36 of these surveys and the associated management data. Here we review the challenges associated with combining disparate datasets and explore some of the opportunities for future research that present themselves thanks to the advent of the AWME database. We present three case studies repeating previously published national scale analyses with data from a larger spatial extent. We demonstrate that i) the standardisation of abundance data to a common measure, prior to the analysis of the combined dataset, has little impact on the outcome of the analyses, ii) the increased length of environmental or management gradients allows for greater confidence in conclusions, iii) the main conclusions of analyses done at different spatial extents remain consistent. These case studies demonstrate the utility of a Europe-wide weed survey database, for clarifying or extending results obtained from studies at smaller scales. This Europe-wide data collection offers many more opportunities for analysis that could not be addressed in smaller datasets; including questions about the effects of climate change, macro-ecological and biogeographical issues related to weed diversity as well as the dominance or rarity of specific weeds in Europe

    Optimization of insect cell based protein production processes - online monitoring, expression systems, scale-up

    Get PDF
    Due to the increasing use of insect cell based expression systems in research and industrial recombinant protein production, the development of efficient and reproducible production processes remains a challenging task. In this context, the application of online monitoring techniques is intended to ensure high and reproducible product qualities already during the early phases of process development. In the following chapter, the most common transient and stable insect cell based expression systems are briefly introduced. Novel applications of insect cell based expression systems for the production of insect derived antimicrobial peptides/proteins (AMPs) are discussed using the example of G. mellonella derived gloverin. Suitable in situ sensor techniques for insect cell culture monitoring in disposable and common bioreactor systems are outlined with respect to optical and capacitive sensor concepts. Since scale-up of production processes is one of the most critical steps in process development, a conclusive overview is given about scale up aspects for industrial insect cell culture processes

    Identification of a transactivation function in the progesterone receptor that interacts with the TAFII110 subunit of the TFIID complex

    No full text
    Transcriptional activation of target genes by the human progesterone receptor is thought to involve direct or indirect protein-protein interactions between the progesterone receptor and general transcription factors. A key role in transcription plays the general factors. A key role in transcription plays the general transcription factor TFIID, a multiprotein complex consisting of the TATA-binding protein and several tightly associated factors (TAFs). TAFs have been shown to be required for activated transcription and are, thus, potential targets of activator proteins. Using in vitro interaction assays, we could identify specific interactions between the progesterone receptor and the TATA-binding protein-associated factor dTAFII110. The dTAFII110 domain responsible for the interaction is distinct from that reported to suffice for binding to Sp1. Somewhat surprisingly, deletion analysis indicated that the previously identified activation functions 1 and 2 of the progesterone receptor are not required for this interaction but pointed to an important role of the DNA binding domain. In cotransfection experiments and an in vitro transcription assay, the DNA binding domain of the progesterone receptor displayed significant activation potential. These findings, taken together, suggest that an interaction between the progesterone receptor and TAFII110 may represent an important step in the mechanism of activation

    Evaluation of nine genotypes of oilseed rape (Brassica napus L.) for larval infestation and performance of rape stem weevil (Ceutorhynchus napi Gyll.).

    No full text
    The rape stem weevil, Ceutorhynchus napi Gyll., is a serious pest of winter oilseed rape (Brassica napus L.) crops in Europe causing severe yield loss. In currently used oilseed rape cultivars no resistance to C. napi has been identified. Resynthesized lines of B. napus have potential to broaden the genetic variability and may improve resistance to insect pests. In this study, the susceptibility to C. napi of three cultivars, one breeding line and five resynthesized lines of oilseed rape was compared in a semi-field plot experiment under multi-choice conditions. Plant acceptance for oviposition was estimated by counting the number of C. napi larvae in stems. The larval instar index and the dry body mass were assessed as indicators of larval performance. The extent of larval feeding within stems was determined by the stem injury coefficient. Morphological stem traits and stem contents of glucosinolates were assessed as potential mediators of resistance. The resynthesized line S30 had significantly fewer larvae than the cultivars Express617 and Visby and the resynthesized lines L122 and L16. The low level of larval infestation in S30 was associated with a low larval instar and stem injury index. Low numbers of larvae were not correlated with the length or diameter of stems, and the level of stem glucosinolates. As indicated by the low larval infestation and slow larval development the resistance of S30 to C. napi is based on both antixenotic and antibiotic properties of the genotypes. The resynthesized line S30 should therefore be introduced into B. napus breeding programs to enhance resistance against C. napi

    Opportunities and challenges for harvest weed seed control in European cropping systems

    No full text
    The rapid increase of herbicide resistance in some of the most problematic annual weeds, and potential negative impacts of herbicides on human health and the environment have led growers to look for alternative non-chemical weed control. Harvest weed seed control (HWSC) is a non-chemical weed control tactic based on reduction of seed return of primarily annual weed species to the soil seed bank that has been successfully adopted by farmers in Australia. The strategy is to collect and/or destroy the weed seeds in the chaff material during harvest using chaff carts, bale direct system, integrated impact mills, windrow burning, chaff tramlining and chaff lining or other methods of targeting the chaff material containing the weed seeds. Two biological characteristics are exploited with successful HWSC: the level of weed seed retention at crop harvest above crop canopy height and coincidence of weed and crop maturity. Initial research efforts in Europe have found that there are several candidates for HWSC among weed species with a high importance in European cropping systems. The highest potential has been found for weeds such as Galium aparine, Lolium rigidum and Silene noctiflora. However, there are several challenges for the adoption of these systems under European conditions compared to e.g., Australia. The challenges include that crop and weed maturity are not concomitant which results in lower seed retention values at crop harvest. In addition, there has not been a concerted research effort to evaluate HWSC systems in European cropping systems. Until now, research on HWSC in Europe mainly focused on the rate of weed seed retention in specific weed species. For HWSC to contribute to the mitigation of herbicide resistance and add to the toolbox of integrated weed management measures, there is an urgent need to take HWSC research to the next level. Although HWSC is not functionally equivalent to herbicide application, it may help to reduce herbicide inputs in the long-term when used in combination with other tactics. Future research and development should focus on the evaluation of HWSC strategies for the practical adoption of these tactics in European cropping systems
    • 

    corecore