20 research outputs found
Precision, time, and cost: a comparison of three sampling designs in an emergency setting
The conventional method to collect data on the health, nutrition, and food security status of a population affected by an emergency is a 30 × 30 cluster survey. This sampling method can be time and resource intensive and, accordingly, may not be the most appropriate one when data are needed rapidly for decision making. In this study, we compare the precision, time and cost of the 30 × 30 cluster survey with two alternative sampling designs: a 33 × 6 cluster design (33 clusters, 6 observations per cluster) and a 67 × 3 cluster design (67 clusters, 3 observations per cluster). Data for each sampling design were collected concurrently in West Darfur, Sudan in September-October 2005 in an emergency setting. Results of the study show the 30 × 30 design to provide more precise results (i.e. narrower 95% confidence intervals) than the 33 × 6 and 67 × 3 design for most child-level indicators. Exceptions are indicators of immunization and vitamin A capsule supplementation coverage which show a high intra-cluster correlation. Although the 33 × 6 and 67 × 3 designs provide wider confidence intervals than the 30 × 30 design for child anthropometric indicators, the 33 × 6 and 67 × 3 designs provide the opportunity to conduct a LQAS hypothesis test to detect whether or not a critical threshold of global acute malnutrition prevalence has been exceeded, whereas the 30 × 30 design does not. For the household-level indicators tested in this study, the 67 × 3 design provides the most precise results. However, our results show that neither the 33 × 6 nor the 67 × 3 design are appropriate for assessing indicators of mortality. In this field application, data collection for the 33 × 6 and 67 × 3 designs required substantially less time and cost than that required for the 30 × 30 design. The findings of this study suggest the 33 × 6 and 67 × 3 designs can provide useful time- and resource-saving alternatives to the 30 × 30 method of data collection in emergency settings
Ministries of Health and the Stewardship of Health Evidence
This chapter describes how Ministries of Health have been mandated to act as stewards of populations’ health according to the World Health Organization. We argue that this mandate extends to them having (at least partial) responsibility for ensuring relevant evidence informs policy decisions. Yet this requires consideration of the evidence advisory systems serving Ministry needs, particularly whether or how such systems work to provide relevant information in a timely manner to key decision points in the policy process. Insights from our six cases are presented to illustrate the structural and practical differences which exist between evidence advisory systems and how, at certain times, key health decisions may in fact lie outside ministerial authority. These divergent experiences highlight a range of analytical challenges when considering the provision of evidence to inform health decisions from an institutional perspective
Increased frequency of flash floods in Dire Dawa, Ethiopia: change in rainfall intensity or human impact?
In the last decade, Ethiopia has been subjected to an increased frequency of flash floods, especially in the town of Dire Dawa. The results of International Organisations studies point to no evidence of a climate-driven change in the magnitude/frequency of floods, though increases in runoff and risk of floods in East Africa are expected. Since few studies of African climate have considered the temporal variations of daily rainfall and the relationship between rainfall intensity, land use change and flash floods in Ethiopia, this study analyses the recent trends of rainfall intensity across Ethiopia in order to ascertain if the increased frequency of flash floods is paralleled by an increase of daily precipitation. Secondly, the relative role of rainfall intensity and land use change in augmenting the frequency of flash floods is investigated in the Dechatu River flowing through the town of Dire Dawa. Results indicate that the increase in rainfall intensity is larger than the increase in runoff generated by land use change with the former being likely the more important factor in controlling the increased frequency of flash flood in Dire Dawa