49 research outputs found

    Fatty acids and stable isotopes (13C, 15N) in southern right whale Eubalaena australis calves in relation toage and mortality at Peninsula Valdes, Argentina

    Get PDF
    Baleen whales accumulate fat reserves during the summer to sustain reproduction while fasting in the winter. The southern right whale Eubalaena australis population that calves off Península Valdés, Argentina, experienced high calf mortality events from 2003 to 2013 and poor nutritional states of mothers could be a contributing cause. Previous studies found that the population’s reproductive success is influenced by prey availability. Mothers unable to build sufficient fat reserves or feeding on prey with different nutritional value may fail to meet the demands of lactation. Milk is the only source of nutrients and energy for calves at Valdés, so their fatty acids (FAs) and stable isotopes should reflect their mother’s diet and feeding-ground locations. Here, we compared FA profiles and C and N stable isotopes of dead calves with those of living calves to evaluate the potential impact of maternal nutrition on calf survival. We found no differences in the FA composition of blubber in dead and living calves, indicating similar maternal diets. Likewise, the isotopic values of living and dead calves imply that their mothers had similar foraging ranges. However, FA composition was greatly affected by calf length, indicating effects of calf age and duration of nursing. These findings suggest that mothers of dead calves did not feed on different diets or feeding grounds compared to mothers of living calves. Future research should further assess the overall health and body condition of the Valdés southern right whale calves.Fil: Marón, Carina Flavia. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Diversidad Biológica y Ecológica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Conservación de Ballenas; ArgentinaFil: Budge, Suzanne M.. Dalhousie University Halifax; CanadáFil: Ward, Robert E.. Utah State University; Estados UnidosFil: Valenzuela, Luciano Oscar. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Sociales. Departamento de Arqueología. Laboratorio de Ecología Evolutiva Humana (Sede Quequén); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; ArgentinaFil: Di Martino, Matías. Programa de Monitoreo Sanitario Ballena Franca Austral; ArgentinaFil: Ricciardi, Marcos. Instituto de Conservación de Ballenas; ArgentinaFil: Sironi, Mariano. Instituto de Conservación de Ballenas; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Diversidad Biológica y Ecológica; Argentina. Programa de Monitoreo Sanitario Ballena Franca Austral; ArgentinaFil: Uhart, Marcela. Programa de Monitoreo Sanitario Ballena Franca Austral; Argentina. University of California; Estados UnidosFil: Seger, Jon. University Of Utah. Department Of Biology; Estados UnidosFil: Rowntree, Victoria J.. University Of Utah. Department Of Biology; Estados Unidos. Instituto de Conservación de Ballenas; Argentina. Programa de Monitoreo Sanitario Ballena Franca Austral; Argentina. Whale Conservation Institute/Ocean Alliance; Estados Unido

    Population comparison of right whale body condition reveals poor state of the North Atlantic right whale

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Christiansen, F., Dawson, S. M., Durban, J. W., Fearnbach, H., Miller, C. A., Bejder, L., Uhart, M., Sironi, M., Corkeron, P., Rayment, W., Leunissen, E., Haria, E., Ward, R., Warick, H. A., Kerr, I., Lynn, M. S., Pettis, H. M., & Moore, M. J. Population comparison of right whale body condition reveals poor state of the North Atlantic right whale. Marine Ecology Progress Series, 640, (2020): 1-16, doi:10.3354/meps13299.The North Atlantic right whale Eubalaena glacialis (NARW), currently numbering <410 individuals, is on a trajectory to extinction. Although direct mortality from ship strikes and fishing gear entanglements remain the major threats to the population, reproductive failure, resulting from poor body condition and sublethal chronic entanglement stress, is believed to play a crucial role in the population decline. Using photogrammetry from unmanned aerial vehicles, we conducted the largest population assessment of right whale body condition to date, to determine if the condition of NARWs was poorer than 3 seemingly healthy (i.e. growing) populations of southern right whales E. australis (SRWs) in Argentina, Australia and New Zealand. We found that NARW juveniles, adults and lactating females all had lower body condition scores compared to the SRW populations. While some of the difference could be the result of genetic isolation and adaptations to local environmental conditions, the magnitude suggests that NARWs are in poor condition, which could be suppressing their growth, survival, age of sexual maturation and calving rates. NARW calves were found to be in good condition. Their body length, however, was strongly determined by the body condition of their mothers, suggesting that the poor condition of lactating NARW females may cause a reduction in calf growth rates. This could potentially lead to a reduction in calf survival or an increase in female calving intervals. Hence, the poor body condition of individuals within the NARW population is of major concern for its future viability.North Atlantic: NOAA NA14OAR4320158; Australia: US Office of Naval Research Marine Mammals Program (Award No. N00014-17-1-3018), the World Wildlife Fund for Nature Australia and a Murdoch University School of Veterinary and Life Sciences Small Grant Award; New Zealand: New Zealand Antarctic Research institute (NZARI 2016-1-4), Otago University and NZ Whale and Dolphin Trust; Argentina: National Geographic Society (Grant number: NGS-379R-18)

    Managing macropods without poisoning ecosystems

    Get PDF
    A recent review of the management of hyperabundant macropods in Australia proposed that expanded professional shooting is likely to lead to better biodiversity and animal welfare outcomes. While the tenets of this general argument are sound, it overlooks one important issue for biodiversity and animal health and welfare: reliance on toxic lead-based ammunition. Lead poisoning poses a major threat to Australia's wildlife scavengers. Current proposals to expand professional macropod shooting would see tons of an extremely toxic and persistent heavy metal continue to be introduced into Australian environments. This contrasts with trends in many other countries, where lead ammunition is, through legislation or voluntary programs, being phased out. Fortunately, there are alternatives to lead ammunition that could be investigated and adopted for improved macropod management. A transition to lead-free ammunition would allow the broad environmental and animal welfare goals desired from macropod management to be pursued without secondarily and unintentionally poisoning scavengers. Through this article, we hope to increase awareness of this issue and encourage discussion of this potential change.publishedVersio

    Avian influenza virus isolated in wild waterfowl in Argentina: Evidence of a potentially unique phylogenetic lineage in South America

    Get PDF
    Avian influenza (AI) viruses have been sporadically isolated in South America. The most recent reports are from an outbreak in commercial poultry in Chile in 2002 and its putative ancestor from a wild bird in Bolivia in 2001. Extensive surveillance in wild birds was carried out in Argentina during 2006-2007. Using RRT-PCR, 12 AI positive detections were made from cloacal swabs. One of those positive samples yielded an AI virus isolated from a wild kelp gull (Larus dominicanus) captured in the South Atlantic coastline of Argentina. Further characterization by nucleotide sequencing reveals that it belongs to the H13N9 subtype. Phylogenetic analysis of the 8 viral genes suggests that the 6 internal genes are related to the isolates from Chile and Bolivia. The analysis also indicates that a cluster of phylogenetically related AI viruses from South America may have evolved independently, with minimal gene exchange, from influenza viruses in other latitudes. The data produced from our investigations are valuable contributions to the study of AI viruses in South America.Centro de Estudios Parasitológicos y de Vectore

    Best practice guidelines for cetacean tagging

    Get PDF
    Animal-borne electronic instruments (tags) are valuable tools for collecting information on cetacean physiology, behaviour and ecology, and for enhancing conservation and management policies for cetacean populations. Tags allow researchers to track the movement patterns, habitat use andother aspects of the behaviour of animals that are otherwise difficult to observe. They can even be used to monitor the physiology of a tagged animal within its changing environment. Such tags are ideal for identifying and predicting responses to anthropogenic threats, thus facilitating the development of robust mitigation measures. With the increasing need for data best provided by tagging and the increasing availability of tags, such research is becoming more common. Tagging can, however, pose risks to the health and welfare of cetaceans and to personnel involved in tagging operations. Here we provide ‘best practice’ recommendations for cetacean tag design, deployment and follow-up assessment of tagged individuals, compiled by biologists and veterinarians with significant experience in cetacean tagging. This paper is intended to serve as a resource to assist tag users, veterinarians, ethics committees and regulatory agency staff in the implementation of high standards of practice, and to promote the training of specialists in this area. Standardised terminology for describing tag design and illustrations of tag types and attachment sites are provided, along with protocols for tag testing and deployment (both remote and through capture-release), including training of operators. The recommendations emphasise the importance of ensuring that tagging is ethically and scientifically justified for a particular project and that tagging only be used to address bona fide research or conservation questions that are best addressed with tagging, as supported by an exploration of alternative methods. Recommendations are provided for minimising effects on individual animals (e.g. through careful selection of the individual, tag design and implant sterilisation) and for improving knowledge of tagging effects on cetaceans through increased post-tagging monitoring.Publisher PDFPeer reviewe

    Diversity and prevalence of zoonotic infections at the animal-human interface of primate trafficking in Peru

    Get PDF
    Wildlife trafficking creates favorable scenarios for intra- and inter-specific interactions that can lead to parasite spread and disease emergence. Among the fauna affected by this activity, primates are relevant due to their potential to acquire and share zoonoses - infections caused by parasites that can spread between humans and other animals. Though it is known that most primate parasites can affect multiple hosts and that many are zoonotic, comparative studies across different contexts for animal-human interactions are scarce. We conducted a multi-parasite screening targeting the detection of zoonotic infections in wild-caught monkeys in nine Peruvian cities across three contexts: captivity (zoos and rescue centers, n = 187); pet (households, n = 69); and trade (trafficked or recently confiscated, n = 132). We detected 32 parasite taxa including mycobacteria, simian foamyvirus, bacteria, helminths, and protozoa. Monkeys in the trade context had the highest prevalence of hemoparasites (including Plasmodium malariae/brasilianum, Trypanosoma cruzi, and microfilaria) and enteric helminths and protozoa were less common in pet monkeys. However, parasite communities showed overall low variation between the three contexts. Parasite richness (PR) was best explained by host genus and the city where the animal was sampled. Squirrel (genus Saimiri) and wooly (genus Lagothrix) monkeys had the highest PR, which was ~2.2 times the PR found in tufted capuchins (genus Sapajus) and tamarins (genus Saguinus/Leontocebus) in a multivariable model adjusted for context, sex, and age. Our findings illustrate that the threats of wildlife trafficking to One Health encompass exposure to multiple zoonotic parasites well-known to cause disease in humans, monkeys, and other species. We demonstrate these threats continue beyond the markets where wildlife is initially sold; monkeys trafficked for the pet market remain a reservoir for and contribute to the translocation of zoonotic parasites to households and other captive facilities where contact with humans is frequent. Our results have practical applications for the healthcare of rescued monkeys and call for urgent action against wildlife trafficking and ownership of monkeys as pets

    Avian influenza virus isolated in wild waterfowl in Argentina: Evidence of a potentially unique phylogenetic lineage in South America

    Get PDF
    Avian influenza (AI) viruses have been sporadically isolated in South America. The most recent reports are from an outbreak in commercial poultry in Chile in 2002 and its putative ancestor from a wild bird in Bolivia in 2001. Extensive surveillance in wild birds was carried out in Argentina during 2006-2007. Using RRT-PCR, 12 AI positive detections were made from cloacal swabs. One of those positive samples yielded an AI virus isolated from a wild kelp gull (Larus dominicanus) captured in the South Atlantic coastline of Argentina. Further characterization by nucleotide sequencing reveals that it belongs to the H13N9 subtype. Phylogenetic analysis of the 8 viral genes suggests that the 6 internal genes are related to the isolates from Chile and Bolivia. The analysis also indicates that a cluster of phylogenetically related AI viruses from South America may have evolved independently, with minimal gene exchange, from influenza viruses in other latitudes. The data produced from our investigations are valuable contributions to the study of AI viruses in South America.Centro de Estudios Parasitológicos y de Vectore

    Investigation of a mass stranding of 68 short-beaked common dolphins in Golfo Nuevo, Península Valdés, Argentina

    Get PDF
    We report on the investigation of a mass stranding of 68 short-beaked common dolphins (Delphinus delphis) that occurred in Golfo Nuevo, Península Valdés, Argentina in March 2018. Twenty-one of the stranded dolphins were returned alive to the sea, while 47 animals died. Dead dolphins included all ages, with more males than females (29 males and 18 females). The cause of death investigation reported here is restricted to 15 adult individuals and one fetus on which a full set of diagnostics was prioritized due to limited funding. Our results demonstrate that the death of 16 dolphins assessed in this study was not due to obvious human effects (e.g. bycatch) or underlying pathologies, as all animals were in good body condition and had no external evidence of injuries. Infections by Morbillivirus, Influenza A virus, Sarcocystis spp., Toxoplasma gondii, or Neospora caninum, as well domoic acid (DA) toxicity were ruled out as ethiologies in this event. Notably, results on exposure to paralytic shelfish toxins (PSP) were the only investigated cause of death found positive. This is the first documentation of exposure to PSP toxins in short-beaked common dolphins from the Argentine Sea. At present our results are insufficient to assess whether PSP toxin exposure played a role in the death of the stranded dolphins. Notwithstanding, the full documentation and investigation of the most commonly reported pathogens and toxins involved in cetacean mass strandings allowed us to clear the most relevant health differentials and suggests areas for future study. Additional potential hypothesis related to factors known or speculated to cause cetacean mass strandings are currently being explored within the ecological context at the time of the event

    Socializing One Health: an innovative strategy to investigate social and behavioral risks of emerging viral threats

    Get PDF
    In an effort to strengthen global capacity to prevent, detect, and control infectious diseases in animals and people, the United States Agency for International Development’s (USAID) Emerging Pandemic Threats (EPT) PREDICT project funded development of regional, national, and local One Health capacities for early disease detection, rapid response, disease control, and risk reduction. From the outset, the EPT approach was inclusive of social science research methods designed to understand the contexts and behaviors of communities living and working at human-animal-environment interfaces considered high-risk for virus emergence. Using qualitative and quantitative approaches, PREDICT behavioral research aimed to identify and assess a range of socio-cultural behaviors that could be influential in zoonotic disease emergence, amplification, and transmission. This broad approach to behavioral risk characterization enabled us to identify and characterize human activities that could be linked to the transmission dynamics of new and emerging viruses. This paper provides a discussion of implementation of a social science approach within a zoonotic surveillance framework. We conducted in-depth ethnographic interviews and focus groups to better understand the individual- and community-level knowledge, attitudes, and practices that potentially put participants at risk for zoonotic disease transmission from the animals they live and work with, across 6 interface domains. When we asked highly-exposed individuals (ie. bushmeat hunters, wildlife or guano farmers) about the risk they perceived in their occupational activities, most did not perceive it to be risky, whether because it was normalized by years (or generations) of doing such an activity, or due to lack of information about potential risks. Integrating the social sciences allows investigations of the specific human activities that are hypothesized to drive disease emergence, amplification, and transmission, in order to better substantiate behavioral disease drivers, along with the social dimensions of infection and transmission dynamics. Understanding these dynamics is critical to achieving health security--the protection from threats to health-- which requires investments in both collective and individual health security. Involving behavioral sciences into zoonotic disease surveillance allowed us to push toward fuller community integration and engagement and toward dialogue and implementation of recommendations for disease prevention and improved health security
    corecore