14 research outputs found

    Remifentanil-based total intravenous anesthesia for pediatric rigid bronchoscopy: comparison of adjuvant propofol and ketamine

    Get PDF
    OBJECTIVE: Laryngoscopy and stimuli inside the trachea cause an intense sympatho-adrenal response. Remifentanil seems to be the optimal opioid for rigid bronchoscopy due to its potent and short-acting properties. The purpose of this study was to compare bolus propofol and ketamine as an adjuvant to remifentanil-based total intravenous anesthesia for pediatric rigid bronchoscopy. MATERIALS AND METHODS: Forty children under 12 years of age who had been scheduled for a rigid bronchoscopy were included in this study. After midazolam premedication, a 1 µg/kg/min remifentanil infusion was started, and patients were randomly allocated to receive either propofol (Group P) or ketamine (Group K) as well as mivacurium for muscle relaxation. Anesthesia was maintained with a 1 µg/kg/min remifentanil infusion and bolus doses of propofol or ketamine. After the rigid bronchoscopy, 0.05 µg/kg/min of remifentanil was maintained until extubation. Hemodynamic parameters, emergence characteristics, and adverse events were evaluated. RESULTS: The demographic variables were comparable between the two groups. The decrease in mean arterial pressure from baseline values to the lowest values during rigid bronchoscopy was greater in Group P (p = 0.049), while the reduction in the other parameters and the incidence of adverse events were comparable between the two groups. The need for assisted or controlled mask ventilation after extubation was higher in Group K. CONCLUSION: Remifentanil-based total intravenous anesthesia with propofol or ketamine as an adjuvant drug along with controlled ventilation is a viable technique for pediatric rigid bronchoscopy. Ketamine does not provide a definite advantage over propofol with respect to hemodynamic stability during rigid bronchoscopy, while propofol seems more suitable during the recovery period

    The Real Time Remote Motion Control of Two Wheeled Mobile Balance Robot by Using Video Streaming

    No full text
    This study presents the motion control of a real time two wheeled balance robot capable of moving back and forward, turning right and left and video streaming via IP (Internet Protocol) camera on it. A C++ based visual user interface is created on PC (Personal Computer) in order to control of the designed Two Wheeled Mobile Balance Robot (TWMBR). By means of the interface, all controller parameters of the robot can be changed via wireless communication module on it. Moreover, the robot’s tilt angle with respect to time, linear displacement and controller output can be observed simultaneously. Within the robot control interface, the videos from IP camera is transferred into the operator screen via TCP/IP (Transmission Control Protocol/Internet Protocol) communication protocol. So, the robot can be controlled via arrow keys and visual interface on PC remotely by an operator. Acceleration and gyro sensors are fused by means of a real-time Kalman Filter so that robot can keep its balance in both moving and stable state in the designed system. Thus, an accurate tilt angle control is realized. Classic PID (Proportional-Integral-Derivative) algorithm is used as robot controller. In conclusion, via IP camera on the robot, the real-time motion control is performed and data diagrams about motion control are obtained

    The Real Time Remote Motion Control of Two Wheeled Mobile Balance Robot by Using Video Streaming

    No full text
    This study presents the motion control of a real time two wheeled balance robot capable of moving back and forward, turning right and left and video streaming via IP (Internet Protocol) camera on it. A C++ based visual user interface is created on PC (Personal Computer) in order to control of the designed Two Wheeled Mobile Balance Robot (TWMBR). By means of the interface, all controller parameters of the robot can be changed via wireless communication module on it. Moreover, the robot’s tilt angle with respect to time, linear displacement and controller output can be observed simultaneously. Within the robot control interface, the videos from IP camera is transferred into the operator screen via TCP/IP (Transmission Control Protocol/Internet Protocol) communication protocol. So, the robot can be controlled via arrow keys and visual interface on PC remotely by an operator. Acceleration and gyro sensors are fused by means of a real-time Kalman Filter so that robot can keep its balance in both moving and stable state in the designed system. Thus, an accurate tilt angle control is realized. Classic PID (Proportional-Integral-Derivative) algorithm is used as robot controller. In conclusion, via IP camera on the robot, the real-time motion control is performed and data diagrams about motion control are obtained

    Remifentanil-based total intravenous anesthesia for pediatric rigid bronchoscopy: comparison of adjuvant propofol and ketamine

    Get PDF
    OBJECTIVE:Laryngoscopy and stimuli inside the trachea cause an intense sympatho-adrenal response. Remifentanil seems to be the optimal opioid for rigid bronchoscopy due to its potent and short-acting properties. The purpose of this study was to compare bolus propofol and ketamine as an adjuvant to remifentanil-based total intravenous anesthesia for pediatric rigid bronchoscopy.MATERIALS AND METHODS:Forty children under 12 years of age who had been scheduled for a rigid bronchoscopy were included in this study. After midazolam premedication, a 1 µg/kg/min remifentanil infusion was started, and patients were randomly allocated to receive either propofol (Group P) or ketamine (Group K) as well as mivacurium for muscle relaxation. Anesthesia was maintained with a 1 µg/kg/min remifentanil infusion and bolus doses of propofol or ketamine. After the rigid bronchoscopy, 0.05 µg/kg/min of remifentanil was maintained until extubation. Hemodynamic parameters, emergence characteristics, and adverse events were evaluated.RESULTS:The demographic variables were comparable between the two groups. The decrease in mean arterial pressure from baseline values to the lowest values during rigid bronchoscopy was greater in Group P (p= 0.049), while the reduction in the other parameters and the incidence of adverse events were comparable between the two groups. The need for assisted or controlled mask ventilation after extubation was higher in Group K.CONCLUSION:Remifentanil-based total intravenous anesthesia with propofol or ketamine as an adjuvant drug along with controlled ventilation is a viable technique for pediatric rigid bronchoscopy. Ketamine does not provide a definite advantage over propofol with respect to hemodynamic stability during rigid bronchoscopy, while propofol seems more suitable during the recovery period
    corecore