8 research outputs found

    Monoamine oxidase-A promotes protective autophagy in human SH-SY5Y neuroblastoma cells through Bcl-2 phosphorylation.

    Get PDF
    Monoamine oxidases (MAOs) are located on the outer mitochondrial membrane and are drug targets for the treatment of neurological disorders. MAOs control the levels of neurotransmitters in the brain via oxidative deamination and contribute to reactive oxygen species (ROS) generation through their catalytic by-product H2O2. Increased ROS levels may modulate mitochondrial function and mitochondrial dysfunction is implicated in a vast array of disorders. However, the downstream effects of MAO-A mediated ROS production in a neuronal model has not been previously investigated. In this study, using MAO-A overexpressing neuroblastoma cells, we demonstrate that higher levels of MAO-A protein/activity results in increased basal ROS levels with associated increase in protein oxidation. Increased MAO-A levels result in increased Lysine-63 linked ubiquitination of mitochondrial proteins and promotes autophagy through Bcl-2 phosphorylation. Furthermore, ROS generated locally on the mitochondrial outer membrane by MAO-A promotes phosphorylation of dynamin-1-like protein, leading to mitochondrial fragmentation and clearance without complete loss of mitochondrial membrane potential. Cellular ATP levels are maintained following MAO-A overexpression and complex IV activity/protein levels increased, revealing a close relationship between MAO-A levels and mitochondrial function. Finally, the downstream effects of increased MAO-A levels are dependent on the availability of amine substrates and in the presence of exogenous substrate, cell viability is dramatically reduced. This study shows for the first time that MAO-A generated ROS is involved in quality control signalling, and increase in MAO-A protein levels leads to a protective cellular response in order to mediate removal of damaged macromolecules/organelles, but substrate availability may ultimately determine cell fate. The latter is particularly important in conditions such as Parkinson's disease, where a dopamine precursor is used to treat disease symptoms and highlights that the fate of MAO-A containing dopaminergic neurons may depend on both MAO-A levels and catecholamine substrate availability

    Grsf1-induced translation of the SNARE protein use1 is required for expansion of the erythroid compartment

    Get PDF
    Induction of cell proliferation requires a concomitant increase in the synthesis of glycosylated lipids and membrane proteins, which is dependent on ER-Golgi protein transport by CopII-coated vesicles. In this process, retrograde transport of ER resident proteins from the Golgi is crucial to maintain ER integrity, and allows for anterograde transport to continue. We previously showed that expression of the CopI specific SNARE protein Use1 (Unusual SNARE in the ER 1) is tightly regulated by eIF4E-dependent translation initiation of Use1 mRNA. Here we investigate the mechanism that controls Use1 mRNA translation. The 5'UTR of mouse Use1 contains a 156 nt alternatively spliced intron. The non-spliced form is the predominantly translated mRNA. The alternatively spliced sequence contains G-repeats that bind the RNA-binding protein G-rich sequence binding factor 1 (Grsf1) in RNA band shift assays. The presence of these G-repeats rendered translation of reporter constructs dependent on the Grsf1 concentration. Down regulation of either Grsf1 or Use1 abrogated expansion of erythroblasts. The 5'UTR of human Use1 lacks the splice donor site, but contains an additional upstream open reading frame in close proximity of the translation start site. Similar to mouse Use1, also the human 5'UTR contains G-repeats in front of the start codon. In conclusion, Grsf1 controls translation of the SNARE protein Use1, possibly by positioning the 40S ribosomal subunit and associated translation factors in front of the translation start site

    Transient Receptor Potential Channel Polymorphisms Are Associated with the Somatosensory Function in Neuropathic Pain Patients

    Get PDF
    Transient receptor potential channels are important mediators of thermal and mechanical stimuli and play an important role in neuropathic pain. The contribution of hereditary variants in the genes of transient receptor potential channels to neuropathic pain is unknown. We investigated the frequency of transient receptor potential ankyrin 1, transient receptor potential melastin 8 and transient receptor potential vanilloid 1 single nucleotide polymorphisms and their impact on somatosensory abnormalities in neuropathic pain patients. Within the German Research Network on Neuropathic Pain (Deutscher Forscbungsverbund Neuropathischer Schmerz) 371 neuropathic pain patients were phenotypically characterized using standardized quantitative sensory testing. Pyrosequencing was employed to determine a total of eleven single nucleotide polymorphisms in transient receptor potential channel genes of the neuropathic pain patients and a cohort of 253 German healthy volunteers. Associations of quantitative sensory testing parameters and single nucleotide polymorphisms between and within groups and subgroups, based on sensory phenotypes, were analyzed. Single nucleotide polymorphisms frequencies did not differ between both the cohorts. However, in neuropathic pain patients transient receptor potential ankyrin 1 710G>A (rs920829, E179K) was associated with the presence of paradoxical heat sensation (p = 0.03), and transient receptor potential vanilloid 1 1911A>G (rs8065080, I585V) with cold hypoalgesia (p = 0.0035). Two main subgroups characterized by preserved (1) and impaired (2) sensory function were identified. In subgroup 1 transient receptor potential vanilloid 1 1911A>G led to significantly less heat hyperalgesia, pinprick hyperalgesia and mechanical hypaesthesia (p = 0.006, p = 0.005 and p<0.001) and transient receptor potential vanilloid 1 1103C>G (rs222747, M315I) to cold hypaesthesia (p = 0.002), but there was absence of associations in subgroup 2. In this study we found no evidence that genetic variants of transient receptor potential channels are involved in the expression of neuropathic pain, but transient receptor potential channel polymorphisms contributed significantly to the somatosensory abnormalities of neuropathic pain patients

    Vitamin K antagonists: relative strengths and weaknesses vs. direct oral anticoagulants for stroke prevention in patients with atrial fibrillation

    No full text
    corecore