321 research outputs found

    Modelling and in vitro testing of the HIV-1 Nef fitness landscape.

    Get PDF
    An effective vaccine is urgently required to curb the HIV-1 epidemic. We have previously described an approach to model the fitness landscape of several HIV-1 proteins, and have validated the results against experimental and clinical data. The fitness landscape may be used to identify mutation patterns harmful to virus viability, and consequently inform the design of immunogens that can target such regions for immunological control. Here we apply such an analysis and complementary experiments to HIV-1 Nef, a multifunctional protein which plays a key role in HIV-1 pathogenesis. We measured Nef-driven replication capacities as well as Nef-mediated CD4 and HLA-I down-modulation capacities of thirty-two different Nef mutants, and tested model predictions against these results. Furthermore, we evaluated the models using 448 patient-derived Nef sequences for which several Nef activities were previously measured. Model predictions correlated significantly with Nef-driven replication and CD4 down-modulation capacities, but not HLA-I down-modulation capacities, of the various Nef mutants. Similarly, in our analysis of patient-derived Nef sequences, CD4 down-modulation capacity correlated the most significantly with model predictions, suggesting that of the tested Nef functions, this is the most important in vivo. Overall, our results highlight how the fitness landscape inferred from patient-derived sequences captures, at least in part, the in vivo functional effects of mutations to Nef. However, the correlation between predictions of the fitness landscape and measured parameters of Nef function is not as accurate as the correlation observed in past studies for other proteins. This may be because of the additional complexity associated with inferring the cost of mutations on the diverse functions of Nef

    Tissue-Tissue Interaction-Triggered Calcium Elevation Is Required for Cell Polarization during Xenopus Gastrulation

    Get PDF
    The establishment of cell polarity is crucial for embryonic cells to acquire their proper morphologies and functions, because cell alignment and intracellular events are coordinated in tissues during embryogenesis according to the cell polarity. Although much is known about the molecules involved in cell polarization, the direct trigger of the process remains largely obscure. We previously demonstrated that the tissue boundary between the chordamesoderm and lateral mesoderm of Xenopus laevis is important for chordamesodermal cell polarity. Here, we examined the intracellular calcium dynamics during boundary formation between two different tissues. In a combination culture of nodal-induced chordamesodermal explants and a heterogeneous tissue, such as ectoderm or lateral mesoderm, the chordamesodermal cells near the boundary frequently displayed intracellular calcium elevation; this frequency was significantly less when homogeneous explants were used. Inhibition of the intracellular calcium elevation blocked cell polarization in the chordamesodermal explants. We also observed frequent calcium waves near the boundary of the dorsal marginal zone (DMZ) dissected from an early gastrula-stage embryo. Optical sectioning revealed that where heterogeneous explants touched, the chordamesodermal surface formed a wedge with the narrow end tucked under the heterogeneous explant. No such configuration was seen between homogeneous explants. When physical force was exerted against a chordamesodermal explant with a glass needle at an angle similar to that created in the explant, or migrating chordamesodermal cells crawled beneath a silicone block, intracellular calcium elevation was frequent and cell polarization was induced. Finally, we demonstrated that a purinergic receptor, which is implicated in mechano-sensing, is required for such frequent calcium elevation in chordamesoderm and for cell polarization. This study raises the possibility that tissue-tissue interaction generates mechanical forces through cell-cell contact that initiates coordinated cell polarization through a transient increase in intracellular calcium

    The Identification of a Small Molecule Compound That Reduces HIV-1 Nef-Mediated Viral Infectivity Enhancement

    Get PDF
    Nef is a multifunctional HIV-1 protein that accelerates progression to AIDS, and enhances the infectivity of progeny viruses through a mechanism that is not yet understood. Here, we show that the small molecule compound 2c reduces Nef-mediated viral infectivity enhancement. When added to viral producer cells, 2c did not affect the efficiency of viral production itself. However, the infectivity of the viruses produced in the presence of 2c was significantly lower than that of control viruses. Importantly, an inhibitory effect was observed with Nef+ wild-type viruses, but not with viruses produced in the absence of Nef or in the presence of proline-rich PxxP motif-disrupted Nef, both of which displayed significantly reduced intrinsic infectivity. Meanwhile, the overexpression of the SH3 domain of the tyrosine kinase Hck, which binds to a PxxP motif in Nef, also reduced viral infectivity. Importantly, 2c inhibited Hck SH3-Nef binding, which was more marked when Nef was pre-incubated with 2c prior to its incubation with Hck, indicating that both Hck SH3 and 2c directly bind to Nef and that their binding sites overlap. These results imply that both 2c and the Hck SH3 domain inhibit the interaction of Nef with an unidentified host protein and thereby reduce Nef-mediated infectivity enhancement. The first inhibitory compound 2c is therefore a valuable chemical probe for revealing the underlying molecular mechanism by which Nef enhances the infectivity of HIV-1

    Modest Attenuation of HIV-1 Vpu Alleles Derived from Elite Controller Plasma

    Get PDF
    In the absence of antiretroviral therapy, infection with human immunodeficiency virus type 1 (HIV-1) can typically not be controlled by the infected host and results in the development of acquired immunodeficiency. In rare cases, however, patients spontaneously control HIV-1 replication. Mechanisms by which such elite controllers (ECs) achieve control of HIV-1 replication include particularly efficient immune responses as well as reduced fitness of the specific virus strains. To address whether polymorphisms in the accessory HIV-1 protein Vpu are associated with EC status we functionally analyzed a panel of plasma-derived vpu alleles from 15 EC and 16 chronic progressor (CP) patients. Antagonism of the HIV particle release restriction by the intrinsic immunity factor CD317/tetherin was well conserved among EC and CP Vpu alleles, underscoring the selective advantage of this Vpu function in HIV-1 infected individuals. In contrast, interference with CD317/tetherin induced NF-κB activation was little conserved in both groups. EC Vpus more frequently displayed reduced ability to downregulate cell surface levels of CD4 and MHC class I (MHC-I) molecules as well as of the NK cell ligand NTB-A. Polymorphisms potentially associated with high affinity interactions of the inhibitory killer immunoglobulin-like receptor (KIR) KIR2DL2 were significantly enriched among EC Vpus but did not account for these functional differences. Together these results suggest that in a subgroup of EC patients, some Vpu functions are modestly reduced, possibly as a result of host selection

    Failure of Effector Function of Human CD8+ T Cells in NOD/SCID/JAK3−/− Immunodeficient Mice Transplanted with Human CD34+ Hematopoietic Stem Cells

    Get PDF
    Humanized mice, which are generated by transplanting human CD34+ hematopoietic stem cells into immunodeficient mice, are expected to be useful for the research on human immune responses. It is reported that antigen-specific T cell responses occur in immunodeficient mice transplanted with both human fetal thymus/liver tissues and CD34+ fetal cells, but it remains unclear whether antigen-specific T cell responses occur in those transplanted with only human CD34+ hematopoietic stem cells (HSCs). Here we investigated the differentiation and function of human CD8+ T cells reconstituted in NOD/SCID/Jak3−/− mice transplanted with human CD34+ HSCs (hNOK mice). Multicolor flow cytometric analysis demonstrated that human CD8+ T cells generated from the CD34+ HSCs comprised only 3 subtypes, i.e., CD27highCD28+CD45RA+CCR7+, CD27+CD28+CD45RA−CCR7+, and CD27+CD28+CD45RA−CCR7− and had 3 phenotypes for 3 lytic molecules, i.e., perforin(Per)−granzymeA(GraA)−granzymeB(GraB)−, Per−GraA+GraB−, and PerlowGraA+GraB+. These CD8+ T cells failed to produce IFN-γ and to proliferate after stimulation with alloantigens. These results indicate that the antigen-specific T cell response cannot be elicited in mice transplanted with only human CD34+ HSCs, because the T cells fail to develop normally in such mice
    corecore