187 research outputs found

    Electron-phonon renormalization in small Fermi energy systems

    Full text link
    The puzzling features of recent photoemission data in cuprates have been object of several analysis in order to identity the nature of the underlying electron-boson interaction. In this paper we point out that many basilar assumptions of the conventional analysis as expected to fail in small Fermi energy systems when, as the cuprates, the Fermi energy EFE_{\rm F} is comparable with the boson energy scale. We discuss in details the novel features appearing in the self-energy of small Fermi energy systems and the possible implications on the ARPES data in cuprates.Comment: 4 pages, 5 eps figures include

    Emergent excitations in a geometrically frustrated magnet

    Full text link
    Frustrated systems are ubiquitous and interesting because their behavior is difficult to predict. Magnetism offers extreme examples in the form of spin lattices where all interactions between spins cannot be simultaneously satisfied. Such geometrical frustration leads to macroscopic degeneracies, and offers the possibility of qualitatively new states of matter whose nature has yet to be fully understood. Here we have discovered how novel composite spin degrees of freedom can emerge from frustrated interactions in the cubic spinel ZnCr2O4. Upon cooling, groups of six spins self-organize into weakly interacting antiferromagnetic loops whose directors, defined as the unique direction along which the spins are aligned parallel or antiparallel, govern all low temperature dynamics. The experimental evidence comes from a measurement of the magnetic form factor by inelastic neutron scattering. While the data bears no resemblance to the atomic form factor for chromium, they are perfectly consistent with the form factor for hexagonal spin loop directors. The hexagon directors are to a first approximation decoupled from each other and hence their reorientations embody the long-sought local zero energy modes for the pyrochlore lattice.Comment: 10 pages, 4 figures upon reques

    The use of quantitative imaging to investigate regulators of membrane trafficking in Arabidopsis stomatal closure

    Get PDF
    Expansion of gene families facilitates robustness and evolvability of biological processes but impedes functional genetic dissection of signalling pathways. To address this, quantitative analysis of single cell responses can help characterise the redundancy within gene families. We developed high-throughput quantitative imaging of stomatal closure, a response of plant guard cells, and performed a reverse genetic screen in a group of Arabidopsis mutants to five stimuli. Focussing on the intersection between guard cell signalling and the endomembrane system, we identified eight clusters based on the mutant stomatal responses. Mutants generally affected in stomatal closure were mostly in genes encoding SNARE and SCAMP membrane regulators. By contrast, mutants in RAB5 GTPase genes played specific roles in stomatal closure to microbial but not drought stress. Together with timed quantitative imaging of endosomes revealing sequential patterns in FLS2 trafficking, our imaging pipeline can resolve non-redundant functions of the RAB5 GTPase gene family. Finally, we provide a valuable image-based tool to dissect guard cell responses and outline a genetic framework of stomatal closure. This article is protected by copyright. All rights reserved
    corecore