1,704 research outputs found

    Potential Role of Protein Kinase B in Insulin-induced Glucose Transport, Glycogen Synthesis, and Protein Synthesis

    Get PDF
    Various biological responses stimulated by insulin have been thought to be regulated by phosphatidylinosi-tol 3-kinase, including glucose transport, glycogen syn-thesis, and protein synthesis. However, the molecular link between phosphatidylinositol 3-kinase and these biological responses has been poorly understood. Re-cently, it has been shown that protein kinase B (PKB/c-Akt/ Rac) lies immediately downstream from phosphati-dylinositol 3-kinase. Here, we show that expression of a constitutively active form of PKB induced glucose up-take, glycogen synthesis, and protein synthesis in L6 myotubes downstream of phosphatidylinositol 3-kinase and independent of Ras and mitogen-activated protein kinase activation. Introduction of constitutively active PKB induced glucose uptake and protein synthesis but not glycogen synthesis in 3T3L-1 adipocytes, which lack expression of glycogen synthase kinase 3 different from L6 myotubes. Furthermore, we show that deactivation of glycogen synthase kinase 3 and activation of rapamy-cin- sensitive serine/threonine kinase by PKB in L6 myo-tubes might be involved in the enhancement of glycogen synthesis and protein synthesis, respectively. These re-sults suggest that PKB acts as a key enzyme linking phosphatidylinositol 3-kinase activation to multiple bi-ological functions of insulin through regulation of downstream kinases in skeletal muscle, a major target tissue of insulin

    Control of pre-replicative complex during the division cycle in Chlamydomonas reinhardtii

    Full text link
    DNA replication is fundamental to all living organisms. In yeast and animals, it is triggered by an assembly of pre-replicative complex including ORC, CDC6 and MCMs. Cyclin Dependent Kinase (CDK) regulates both assembly and firing of the pre-replicative complex. We tested temperature-sensitive mutants blocking Chlamydomonas DNA replication. The mutants were partially or completely defective in DNA replication and did not produce mitotic spindles. After a long G1, wild type Chlamydomonas cells enter a division phase when it undergoes multiple rapid synchronous divisions (‘multiple fission’). Using tagged transgenic strains, we found that MCM4 and MCM6 were localized to the nucleus throughout the entire multiple fission division cycle, except for transient cytoplasmic localization during each mitosis. Chlamydomonas CDC6 was transiently localized in nucleus in early division cycles. CDC6 protein levels were very low, probably due to proteasomal degradation. CDC6 levels were severely reduced by inactivation of CDKA1 (CDK1 ortholog) but not the plant-specific CDKB1. Proteasome inhibition did not detectably increase CDC6 levels in the cdka1 mutant, suggesting that CDKA1 might upregulate CDC6 at the transcriptional level. All of the DNA replication proteins tested were essentially undetectable until late G1. They accumulated specifically during multiple fission and then were degraded as cells completed their terminal divisions. We speculate that loading of origins with the MCM helicase may not occur until the end of the long G1, unlike in the budding yeast system. We also developed a simple assay for salt-resistant chromatin binding of MCM4, and found that tight MCM4 loading was dependent on ORC1, CDC6 and MCM6, but not on RNR1 or CDKB1. These results provide a microbial framework for approaching replication control in the plant kingdom

    Systematic Study of Short Range Antiferromagnetic Order and The Spin-Glass State in Lightly Doped La2-xSrxCuO4

    Full text link
    Systematic measurements of the magnetic susceptibility were performed on single crystals of lightly doped La2-xSrxCuO4 (x=0.03, 0.04 and 0.05). For all samples the temperature dependence of the in-plane magnetic susceptibility shows typical spin-glass features with spin-glass transition temperatures Tg of 6.3K, 5.5K and 5.0K for x=0.03, 0.04 and 0.05, respectively. The canonical spin-glass order parameter extracted from the in-plane susceptibility of all the samples follows a universal scaling curve. On the other hand, the out-of-plane magnetic susceptibility deviates from Curie law below a temperature Tdv, higher than Tg. Comparing with previous neutron scattering results with an instrumental energy resolution of 0.25 meV from Wakimoto et al., the x-dependence of Tdv is qualitatively the same as that of Tel, the temperature below which the elastic magnetic scattering develops around (pi, pi). Thus, a revised magnetic phase diagram in the lightly doped region of La2-xSrxCuO4 is proposed. The Curie constants calculated from the in-plane susceptibility are independent of the Sr concentration. On the basis of the cluster spin-glass model, this fact might reflect an inhomogeneous distribution of doped holes in the CuO2 plane, such as in a stripe structure.Comment: 7 pages, 6 figure

    Observation of New Incommensurate Magnetic Correlations at the Lower Critical Concentration for Superconductivity (x=0.05) in La(2-x)Sr(x)CuO4

    Full text link
    Neutron-scattering experiments have been performed on lightly-doped La(2-x)Sr(x)CuO4 single crystals in both the insulating (x=0.03,0.04,0.05) and superconducting (x=0.06) regions. Elastic magnetic peaks are observed at low temperatures in all samples with the maximum peak linewidth occuring at the critical concentration x_c=0.05. New incommensurate peaks are observed only at x=0.05, the positions of which are rotated by 45 degrees in reciprocal space about (pi,pi) from those observed for x>=0.06 in the superconducting phase.Comment: 5 pages, LaTeX, 4 figures include

    The GATA1s isoform is normally down-regulated during terminal haematopoietic differentiation and over-expression leads to failure to repress MYB, CCND2 and SKI during erythroid differentiation of K562 cells

    Get PDF
    Background: Although GATA1 is one of the most extensively studied haematopoietic transcription factors little is currently known about the physiological functions of its naturally occurring isoforms GATA1s and GATA1FL in humans—particularly whether the isoforms have distinct roles in different lineages and whether they have non-redundant roles in haematopoietic differentiation. As well as being of general interest to understanding of haematopoiesis, GATA1 isoform biology is important for children with Down syndrome associated acute megakaryoblastic leukaemia (DS-AMKL) where GATA1FL mutations are an essential driver for disease pathogenesis. <p/>Methods: Human primary cells and cell lines were analyzed using GATA1 isoform specific PCR. K562 cells expressing GATA1s or GATA1FL transgenes were used to model the effects of the two isoforms on in vitro haematopoietic differentiation. <p/>Results: We found no evidence for lineage specific use of GATA1 isoforms; however GATA1s transcripts, but not GATA1FL transcripts, are down-regulated during in vitro induction of terminal megakaryocytic and erythroid differentiation in the cell line K562. In addition, transgenic K562-GATA1s and K562-GATA1FL cells have distinct gene expression profiles both in steady state and during terminal erythroid differentiation, with GATA1s expression characterised by lack of repression of MYB, CCND2 and SKI. <p/>Conclusions: These findings support the theory that the GATA1s isoform plays a role in the maintenance of proliferative multipotent megakaryocyte-erythroid precursor cells and must be down-regulated prior to terminal differentiation. In addition our data suggest that SKI may be a potential therapeutic target for the treatment of children with DS-AMKL

    Gene Silencing of Phogrin Unveils Its Essential Role in Glucose-Responsive Pancreatic β-Cell Growth

    Get PDF
    OBJECTIVE—Phogrin and IA-2, autoantigens in insulin-dependent diabetes, have been shown to be involved in insulin secretion in pancreatic β-cells; however, implications at a molecular level are confusing from experiment to experiment. We analyzed biological functions of phogrin in β-cells by an RNA interference technique
    corecore