22 research outputs found

    Ice core chemistry database: an Antarctic compilation of sodium and sulfate records spanning the past 2000 years

    Get PDF
    Changes in sea ice conditions and atmospheric circulation over the Southern Ocean play an important role in modulating Antarctic climate. However, observations of both sea ice and wind conditions are limited in Antarctica and the Southern Ocean, both temporally and spatially, prior to the satellite era (1970 onwards). Ice core chemistry data can be used to reconstruct changes over annual, decadal, and millennial timescales. To facilitate sea ice and wind reconstructions, the CLIVASH2k (CLimate Variability in Antarctica and the Southern Hemisphere over the past 2000 years) working group has compiled a database of two species, sodium [Na+] and sulfate [SO2− 4 ], commonly measured ionic species. The database (https://doi.org/10.5285/9E0ED16E-F2AB4372-8DF3-FDE7E388C9A7; Thomas et al., 2022) comprises records from 105 Antarctic ice cores, containing records with a maximum age duration of 2000 years. An initial filter has been applied, based on evaluation against sea ice concentration, geopotential height (500 hPa), and surface wind fields to identify sites suitable for reconstructing past sea ice conditions, wind strength, or atmospheric circulation

    Ice core chemistry database: an Antarctic compilation of sodium and sulfate records spanning the past 2000 years

    Get PDF
    Changes in sea ice conditions and atmospheric circulation over the Southern Ocean play an important role in modulating Antarctic climate. However, observations of both sea ice and wind conditions are limited in Antarctica and the Southern Ocean, both temporally and spatially, prior to the satellite era (1970 onwards). Ice core chemistry data can be used to reconstruct changes over annual, decadal, and millennial timescales. To facilitate sea ice and wind reconstructions, the CLIVASH2k (CLimate Variability in Antarctica and the Southern Hemisphere over the past 2000 years) working group has compiled a database of two species, sodium [Na+] and sulfate [SO2− 4 ], commonly measured ionic species. The database (https://doi.org/10.5285/9E0ED16E-F2AB4372-8DF3-FDE7E388C9A7; Thomas et al., 2022) comprises records from 105 Antarctic ice cores, containing records with a maximum age duration of 2000 years. An initial filter has been applied, based on evaluation against sea ice concentration, geopotential height (500 hPa), and surface wind fields to identify sites suitable for reconstructing past sea ice conditions, wind strength, or atmospheric circulation

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Relationship between weather regimes and atmospheric rivers in East Antarctica.

    No full text
    International audienceHere, we define weather regimes in the East Antarctica—Southern Ocean sector based on daily anomalies of 700 hPa geopotential height derived from ERA5 reanalysis during 1979–2018. Most regimes and their preferred transitions depict synoptic-scale disturbances propagating eastwards off the Antarctic coastline. While regime sequences are generally short, their interannual variability is strongly driven by the polarity of the Southern Annular Mode (SAM). Regime occurrences are then intersected with atmospheric rivers (ARs) detected over the same region and period. ARs are equiprobable throughout the year, but clearly concentrate during regimes associated with a strong atmospheric ridges/blockings on the eastern part of the domain, which act to channel meridional advection of heat and moisture from the lower latitudes towards Antarctica. Both regimes and ARs significantly shape climate variability in Antarctica. Regimes favorable to AR occurrences are associated with anomalously warm and humid conditions in coastal Antarctica and, to a lesser extent, the hinterland parts of the Antarctic plateau. These anomalies are strongly enhanced during AR events, with warmer anomalies and dramatically amplified snowfall amounts. Large-scale conditions favoring AR development are finally explored. They show weak dependency to the SAM, but particularly strong atmospheric ridges/blockings over the Southern Ocean appear as the most favorable pattern, in which ARs can be embedded, and to which they contribute

    Examining Atmospheric River Life Cycles in East Antarctica

    No full text
    International audienceDuring atmospheric river (AR) landfalls on the Antarctic ice sheet, the high waviness of the circumpolar polar jet stream allows for subtropical air masses to be advected toward the Antarctic coastline. These rare but high‐impact AR events are highly consequential for the Antarctic mass balance; yet little is known about the various atmospheric dynamical components determining their life cycle. By using an AR detection algorithm to retrieve AR landfalls at Dumont d'Urville and non‐AR analogs based on 700 hPa geopotential height, we examined what makes AR landfalls unique and studied the complete life cycle of ARs reaching Dumont d'Urville. ARs form in the mid‐latitudes/subtropics in areas of high surface evaporation, likely in response to tropical deep convection anomalies. These convection anomalies likely lead to Rossby wave trains that help amplify the upper‐tropospheric flow pattern. As the AR approaches Antarctica, condensation of isentropically lifted moisture causes latent heat release that—in conjunction with poleward warm air advection—induces geopotential height rises and anticyclonic upper‐level potential vorticity tendencies downstream. As evidenced by a blocking index, these tendencies lead to enhanced ridging/blocking that persist beyond the AR landfall time, sustaining warm air advection onto the ice sheet. Finally, we demonstrate a connection between tropopause polar vortices and mid‐latitude cyclogenesis in an AR case study. Overall, the non‐AR analogs reveal that the amplified jet pattern observed during AR landfalls is a result of enhanced poleward moisture transport and associated diabatic heating which is likely impossible to replicate without strong moisture transport
    corecore