1,661 research outputs found

    A New Analysis of the Exoplanet Hosting System HD 6434

    Get PDF
    The current goal of exoplanetary science is not only focused on detecting but characterizing planetary systems in hopes of understanding how they formed, evolved, and relate to the Solar System. The Transit Ephemeris Refinement and Monitoring Survey (TERMS) combines both radial velocity (RV) and photometric data in order to achieve unprecedented ground-based precision in the fundamental properties of nearby, bright, exoplanet-hosting systems. Here we discuss HD 6434 and its planet, HD 6434b, which has a M_p*sin(i) = 0.44 M_J mass and orbits every 22.0170 days with an eccentricity of 0.146. We have combined previously published RV data with new measurements to derive a predicted transit duration of ~6 hrs, or 0.25 days, and a transit probability of 4%. Additionally, we have photometrically observed the planetary system using both the 0.9m and 1.0m telescopes at the Cerro Tololo Inter-American Observatory, covering 75.4% of the predicted transit window. We reduced the data using the automated TERMS Photometry Pipeline, developed to ensure consistent and accurate results. We determine a dispositive null result for the transit of HD 6434b, excluding the full transit to a depth of 0.9% and grazing transit due to impact parameter limitations to a depth of 1.6%Comment: 9 pages, 5 figures, 3 tables, accepted to A

    Dynamical Evolution of Elliptical Galaxies with Central Singularities

    Full text link
    We study the effect of a massive central singularity on the structure of a triaxial galaxy using N-body simulations. Starting from a single initial model, we grow black holes with various final masses Mh and at various rates, ranging from impulsive to adiabatic. In all cases, the galaxy achieves a final shape that is nearly spherical at the center and close to axisymmetric throughout. However, the rate of change of the galaxy's shape depends strongly on the ratio Mh/Mg of black hole mass to galaxy mass. When Mh/Mg < 0.3%, the galaxy evolves in shape on a timescale that exceeds 100 orbital periods, or roughly a galaxy lifetime. When Mh/Mg > 2%, the galaxy becomes axisymmetric in little more than a crossing time. We propose that the rapid evolution toward axisymmetric shapes that occurs when Mh/Mg > 2% provides a negative feedback mechanism which limits the mass of central black holes by cutting off their supply of fuel.Comment: 27 Latex pages, 9 Postscript figures, uses aastex.sty. Accepted for Publication in The Astrophysical Journal, Nov. 26, 199

    No planet for HD 166435

    Get PDF
    The G0V star HD166435 has been observed by the fiber-fed spectrograph ELODIE as one of the targets in the large extra-solar planet survey that we are conducting at the Observatory of Haute-Provence. We detected coherent, low-amplitude, radial-velocity variations with a period of 3.7987days, suggesting a possible close-in planetary companion. Subsequently, we initiated a series of high-precision photometric observations to search for possible planetary transits and an additional series of CaII H and K observations to measure the level of surface magnetic activity and to look for possible rotational modulation. Surprisingly, we found the star to be photometrically variable and magnetically active. A detailed study of the phase stability of the radial-velocity signal revealed that the radial-velocity variability remains coherent only for durations of about 30days. Analysis of the time variation of the spectroscopic line profiles using line bisectors revealed a correlation between radial velocity and line-bisector orientation. All of these observations, along with a one-quarter cycle phase shift between the photometric and the radial-velocity variationss, are well explained by the presence of dark photospheric spots on HD166435. We conclude that the radial-velocity variations are not due to gravitational interaction with an orbiting planet but, instead, originate from line-profile changes stemming from star spots on the surface of the star. The quasi-coherence of the radial-velocity signal over more than two years, which allowed a fair fit with a binary model, makes the stability of this star unusual among other active stars. It suggests a stable magnetic field orientation where spots are always generated at about the same location on the surface of the star.Comment: 9 pages, 8 figures, Accepted for publication in A&

    Li depletion in solar analogues with exoplanets: Extending the sample

    Full text link
    We want to study the effects of the formation of planets and planetary systems on the atmospheric Li abundance of planet host stars. In this work we present new determinations of lithium abundances for 326 Main Sequence stars with and without planets in the Teff_\mathrm{eff} range 5600-5900 K. 277 stars come from the HARPS sample, the remaining targets have been observed with a variety of high resolution spectrographs. We confirm significant differences in the Li distribution of solar twins (Teff_\mathrm{eff} = T±_{\odot} \pm 80 K, log g = log g_{\odot} ±\pm 0.2 and [Fe/H] = [Fe/H]±_{\odot} \pm 0.2): the full sample of planet host stars (22) shows Li average values lower than "single" stars with no detected planets (60). If we focus in subsamples with narrower ranges in metallicity and age, we observe indications of a similar result though it is not so clear for some of the studied subsamples. Furthermore, we compare the observed spectra of several couples of stars with very similar parameters which show different Li abundances up to 1.6 dex. Therefore we show that neither age, nor mass nor metallicity of a parent star is the only responsible for enhanced Li depletion in solar analogues. We conclude that another variable must account for that difference and suggest that this could be the presence of planets which causes additional rotationally induced mixing in the external layers of planet host stars. Moreover, we find indications that the amount of depletion of Li in planet host solar-type stars is higher when the planets are more massive than Jupiter.Comment: 16 pages, accepted for publication in A&

    Characterization of the K2-18 multi-planetary system with HARPS: A habitable zone super-Earth and discovery of a second, warm super-Earth on a non-coplanar orbit

    Full text link
    The bright M dwarf K2-18 at 34 pc is known to host a transiting super-Earth-sized planet orbiting within the star's habitable zone; K2-18b. Given the superlative nature of this system for studying an exoplanetary atmosphere receiving similar levels of insolation as the Earth, we aim to characterize the planet's mass which is required to interpret atmospheric properties and infer the planet's bulk composition. We obtain precision radial velocity measurements with the HARPS spectrograph and couple those measurements with the K2 photometry to jointly model the observed radial velocity variation with planetary signals and a radial velocity jitter model based on Gaussian process regression. We measure the mass of K2-18b to be 8.0±1.98.0 \pm 1.9 M_{\oplus} with a bulk density of 3.7±0.93.7 \pm 0.9 g/cm3^3 which may correspond to a predominantly rocky planet with a significant gaseous envelope or an ocean planet with a water mass fraction 50\gtrsim 50%. We also find strong evidence for a second, warm super-Earth K2-18c at 9\sim 9 days with a semi-major axis 2.4 times smaller than the transiting K2-18b. After re-analyzing the available light curves of K2-18 we conclude that K2-18c is not detected in transit and therefore likely has an orbit that is non-coplanar with K2-18b. A suite of dynamical integrations with varying simulated orbital eccentricities of the two planets are used to further constrain each planet's eccentricity posterior from which we measure eb<0.43e_b < 0.43 and ec<0.47e_c < 0.47 at 99% confidence. The discovery of the inner planet K2-18c further emphasizes the prevalence of multi-planet systems around M dwarfs. The characterization of the density of K2-18b reveals that the planet likely has a thick gaseous envelope which along with its proximity to the Solar system makes the K2-18 planetary system an interesting target for the atmospheric study of an exoplanet receiving Earth-like insolation.Comment: 13 pages, 8 figures including 4 interactive figures best viewed in Adobe Acrobat. Submitted to Astronomy & Astrophysics. Comments welcom

    Potential Mercurian Analogues: Aubrite and Enstatite Chondrite Impact Melt Meteorites

    Get PDF
    The MESSENGER (MErcury Surface Space ENvironment GEochemistry and Ranging Spacecraft) mission provided new data that have helped us better constrain the surficial mineralogy and composition of Mercury. Mercury has an extremely low oxygen fugacity (f O2) (Iron Wustite (IW) -7.3 to IW -2.6), and at these unique conditions, elements, which usually exhibit lithophile behavior on Earth, can exhibit chalcophile or siderophile behavior on Mercury. No samples have been returned from Mercury; therefore, we must study candidate meteorite analogs to better understand the formation conditions of minerals inferred to be present at the Mercurian surface and Mercurian magmatic processes. In this study, we present a comprehensive analysis of a representative suite of eight aubrites and four enstatite chondrite impact melts (ECIM), which both have a similar f O2 to Mercury, and contain exotic sulfides that have been inferred to be present at the Mercurian surface. These characteristics allow us to assess their relevance for understanding the mineralogy and magmatic processes of Mercury. The ECIM were previously classified as aubrites, but we show that they are actually ECIM with a potential EH (high enstatite) parent body origin due to the presence of niningerite, Si-enriched kamacite, and uniform Ni in schreibersite. We propose that, with respect to the aubrites, the ECIM represent an ideal candidate for Mercurian studies due to their mineralogy and modal mineralogy. Compared to the aubrites, the ECIM samples do not contain forsterite or diopside, show a poorer sulfide diversity, contain graphite, and have a higher volume percentage of metal phases. Although the Mercurian surface contains forsterite and diopside, graphite and a similar amount of metal and sulfides as seen in the ECIM are inferred to be present on Mercury. According to the calculated normative Mercurian mineralogy, both candidate meteorites are most analogous to the Caloris Basin and Northern Plains Lower Mg regions

    WASP-29b: A Saturn-sized transiting exoplanet

    Full text link
    We report the discovery of a Saturn-sized planet transiting a V = 11.3, K4 dwarf star every 3.9 d. WASP-29b has a mass of 0.24+/-0.02 M_Jup and a radius of 0.79+/-0.05 R_Jup, making it the smallest planet so far discovered by the WASP survey, and the exoplanet most similar in mass and radius to Saturn. The host star WASP-29 has an above-Solar metallicity and fits a possible correlation for Saturn-mass planets such that planets with higher-metallicity host stars have higher core masses and thus smaller radii.Comment: 6 pages, submitted to ApJ

    WASP-157b, a Transiting Hot Jupiter Observed with K2

    Get PDF
    We announce the discovery of the transiting hot Jupiter WASP-157b in a 3.95-d orbit around a V = 12.9 G2 main-sequence star. This moderately inflated planet has a Saturn-like density with a mass of 0.57±0.100.57 \pm 0.10 MJup_{\rm Jup} and a radius of 1.06±0.051.06 \pm 0.05 RJup_{\rm Jup}. We do not detect any rotational or phase-curve modulations, nor the secondary eclipse, with conservative semi-amplitude upper limits of 250 and 20 ppm, respectively.Comment: 6 pages, 5 figures and 4 tables. Accepted for publication in PAS
    corecore