218 research outputs found

    Interaction of Streptavidin-Based Peptide-MHC Oligomers (Tetramers) with Cell-Surface T Cell Receptors

    Get PDF
    he binding of oligomeric peptide–MHC (pMHC) complexes to cell surface TCR can be considered to approximate TCR–pMHC interactions at cell-cell interfaces. In this study, we analyzed the equilibrium binding of streptavidin-based pMHC oligomers (tetramers) and their dissociation kinetics from CD8[superscript pos] T cells from 2C-TCR transgenic mice and from T cell hybridomas that expressed the 2C TCR or a high-affinity mutant (m33) of this TCR. Our results show that the tetramers did not come close to saturating cell-surface TCR (binding only 10–30% of cell-surface receptors), as is generally assumed in deriving affinity values (K[subscript D]), in part because of dissociative losses from tetramer-stained cells. Guided by a kinetic model, the oligomer dissociation rate and equilibrium constants were seen to depend not only on monovalent association and dissociation rates (k[subscript off] and k[subscript on]), but also on a multivalent association rate (μ) and TCR cell-surface density. Our results suggest that dissociation rates could account for the recently described surprisingly high frequency of tetramer-negative, functionally competent T cells in some T cell responses.National Institutes of Health (U.S.) (Grant P01 CA097296)National Institutes of Health (U.S.) (Grant R01 GM55767)National Institutes of Health (U.S.) (Grant PO1-AI071195)National Institutes of Health (U.S.). Pioneer Awar

    2D-Qsar for 450 types of amino acid induction peptides with a novel substructure pair descriptor having wider scope

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Quantitative structure-activity relationships (QSAR) analysis of peptides is helpful for designing various types of drugs such as kinase inhibitor or antigen. Capturing various properties of peptides is essential for analyzing two-dimensional QSAR. A descriptor of peptides is an important element for capturing properties. The atom pair holographic (APH) code is designed for the description of peptides and it represents peptides as the combination of thirty-six types of key atoms and their intermediate binding between two key atoms.</p> <p>Results</p> <p>The substructure pair descriptor (SPAD) represents peptides as the combination of forty-nine types of key substructures and the sequence of amino acid residues between two substructures. The size of the key substructures is larger and the length of the sequence is longer than traditional descriptors. Similarity searches on C5a inhibitor data set and kinase inhibitor data set showed that order of inhibitors become three times higher by representing peptides with SPAD, respectively. Comparing scope of each descriptor shows that SPAD captures different properties from APH.</p> <p>Conclusion</p> <p>QSAR/QSPR for peptides is helpful for designing various types of drugs such as kinase inhibitor and antigen. SPAD is a novel and powerful descriptor for various types of peptides. Accuracy of QSAR/QSPR becomes higher by describing peptides with SPAD.</p

    Connexin-43 upregulation in micrometastases and tumor vasculature and its role in tumor cell attachment to pulmonary endothelium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The modulation of gap junctional communication between tumor cells and between tumor and vascular endothelial cells during tumorigenesis and metastasis is complex. The notion of a role for loss of gap junctional intercellular communication in tumorigenesis and metastasis has been controversial. While some of the stages of tumorigenesis and metastasis, such as uncontrolled cell division and cellular detachment, would necessitate the loss of intercellular junctions, other stages, such as intravasation, endothelial attachment, and vascularization, likely require increased cell-cell contact. We hypothesized that, in this multi-stage scheme, connexin-43 is centrally involved as a cell adhesion molecule mediating metastatic tumor attachment to the pulmonary endothelium.</p> <p>Methods</p> <p>Tumor cell attachment to pulmonary vasculature, tumor growth, and connexin-43 expression was studied in metastatic lung tumor sections obtained after tail-vein injection into nude mice of syngeneic breast cancer cell lines, overexpressing wild type connexin-43 or dominant-negatively mutated connexin-43 proteins. High-resolution immunofluorescence microscopy and Western blot analysis was performed using a connexin-43 monoclonal antibody. Calcein Orange Red AM dye transfer by fluorescence imaging was used to evaluate the gap junction function.</p> <p>Results</p> <p>Adhesion of breast cancer cells to the pulmonary endothelium increased with cancer cells overexpressing connexin-43 and markedly decreased with cells expressing dominant-negative connexin-43. Upregulation of connexin-43 was observed in tumor cell-endothelial cell contact areas <it>in vitro </it>and <it>in vivo</it>, and in areas of intratumor blood vessels and in micrometastatic foci.</p> <p>Conclusion</p> <p>Connexin-43 facilitates metastatic 'homing' by increasing adhesion of cancer cells to the lung endothelial cells. The marked upregulation of connexin-43 in tumor cell-endothelial cell contact areas, whether in preexisting 'homing' vessels or in newly formed tumor vessels, suggests that connexin-43 can serve as a potential marker of micrometastases and tumor vasculature and that it may play a role in the early incorporation of endothelial cells into small tumors as seeds for vasculogenesis.</p

    A Detailed Analysis of the Murine TAP Transporter Substrate Specificity

    Get PDF
    The transporter associated with antigen processing (TAP) supplies cytosolic peptides into the endoplasmic reticulum for binding to major histocompatibility complex (MHC) class I molecules. Its specificity therefore influences the repertoire of peptides presented by MHC molecules. Compared to human TAP, murine TAP's binding specificity has not been characterized as well, even though murine systems are widely used for basic studies of antigen processing and presentation.We performed a detailed experimental analysis of murine TAP binding specificity by measuring the binding affinities of 323 peptides. Based on this experimental data, a computational model of murine TAP specificity was constructed. The model was compared to previously generated data on human and murine TAP specificities. In addition, the murine TAP specificities for known epitopes and random peptides were predicted and compared to assess the impact of murine TAP selectivity on epitope selection.Comparisons to a previously constructed model of human TAP specificity confirms the well-established differences for peptide substrates with positively charged C-termini. In addition these comparisons show that several residues at the N-terminus of peptides which strongly influence binding to human TAP showed little effect on binding to murine TAP, and that the overall influence of the aminoterminal residues on peptide affinity for murine TAP is much lower than for the human transporter. Murine TAP also partly prefers different hydrophobic amino acids than human TAP in the carboxyterminal position. These species-dependent differences in specificity determined in vitro are shown to correlate with the epitope repertoire recognized in vivo. The quantitative model of binding specificity of murine TAP developed herein should be useful for interpreting epitope mapping and immunogenicity data obtained in humanized mouse models

    Changing Domesticity of Aedes aegypti in Northern Peninsular Malaysia: Reproductive Consequences and Potential Epidemiological Implications

    Get PDF
    BACKGROUND: The domestic dengue vector Aedes aegypti mosquitoes breed in indoor containers. However, in northern peninsular Malaysia, they show equal preference for breeding in both indoor and outdoor habitats. To evaluate the epidemiological implications of this peridomestic adaptation, we examined whether Ae. aegypti exhibits decreased survival, gonotrophic activity, and fecundity due to lack of host availability and the changing breeding behavior. METHODOLOGY/PRINCIPAL FINDINGS: This yearlong field surveillance identified Ae. aegypti breeding in outdoor containers on an enormous scale. Through a sequence of experiments incorporating outdoors and indoors adapting as well as adapted populations, we observed that indoors provided better environment for the survival of Ae. aegypti and the observed death patterns could be explained on the basis of a difference in body size. The duration of gonotrophic period was much shorter in large-bodied females. Fecundity tended to be greater in indoor acclimated females. We also found increased tendency to multiple feeding in outdoors adapted females, which were smaller in size compared to their outdoors breeding counterparts. CONCLUSION/SIGNIFICANCE: The data presented here suggest that acclimatization of Ae. aegypti to the outdoor environment may not decrease its lifespan or gonotrophic activity but rather increase breeding opportunities (increased number of discarded containers outdoors), the rate of larval development, but small body sizes at emergence. Size is likely to be correlated with disease transmission. In general, small size in Aedes females will favor increased blood-feeding frequency resulting in higher population sizes and disease occurrence
    corecore