179 research outputs found

    Fundamental research on the label-free detection of protein adsorption using near-infrared light-responsive plasmonic metal nanoshell arrays with controlled nanogap

    Get PDF
    In this work, we focused on the label-free detection of simple protein binding using near-infrared light-responsive plasmonic nanoshell arrays with a controlled interparticle distance. The nanoshell arrays were fabricated by a combination of colloidal self-assembly and subsequent isotropic helium plasma etching under atmospheric pressure. The diameter, interparticle distance, and shape of nanoshells can be tuned with nanometric accuracy by changing the experimental conditions. The Au, Ag, and Cu nanoshell arrays, having a 240-nm diameter (inner, 200-nm polystyrene (PS) core; outer, 20-nm metal shell) and an 80-nm gap distance, exhibited a well-defined localized surface plasmon resonance (LSPR) peak at the near-infrared region. PS@Au nanoshell arrays showed a 55-nm red shift of the maximum LSPR wavelength of 885 nm after being exposed to a solution of bovine serum albumin (BSA) proteins for 18 h. On the other hand, in the case of Cu nanoshell arrays before/after incubation to the BSA solution, we found a 30-nm peak shifting. We could evaluate the difference in LSPR sensing performance by changing the metal materials

    Structure and properties of the C-terminal β-helical domain of VgrG protein from Escherichia coli O157

    Get PDF
    The bacterial Type 6 secretion system (T6SS) translocates protein toxins (also called effectors) from the cytosol of a T6SS-carrying cell to a target cell by a syringe-like supramolecular complex resembling a contractile tail of bacteriophages. Valine-glycine repeat protein G (VgrG) proteins, which are the homologues of the gp27-gp5 (gene product) cell puncturing complex of bacteriophage T4, are considered to be located at the attacking tip of the bacterial T6SS apparatus. Here, we over-expressed six VgrG proteins from pathogenic Escherichia coli O157 and CFT073 strains. Purified VgrG1 of E. coli O157 and c3393 of E. coli CFT073 form trimer in solution and are rich in β-structure. We also solved the crystal structure of a trypsin-resistant C-terminal fragment of E. coli O157 VgrG1 (VgrG1CG561) at 1.95 Å resolution. VgrG1CG561 forms a three-stranded antiparallel β-helix which is structurally similar to the β-helix domain of the central spike protein (gp138) of phi92 phage, indicating a possible evolutional relationship. Comparison of four different three-stranded β-helix proteins shows how their amino acid composition determines the protein fol

    Epithelial Splicing Regulatory Protein 1 is a Favorable Prognostic Factor in Pancreatic Cancer that Attenuates Pancreatic Metastases

    Get PDF
    Epithelial splicing regulatory protein 1 (ESRP1) binds the FGFR-2 auxiliary cis-element ISE/ISS-3, located in the intron between exon IIIb and IIIc, and primarily promotes FGFR-2 IIIb expression. Here we assessed the role of ESRP1 in pancreatic ductal adenocarcinoma (PDAC). Immunohistochemical analysis was performed using anti-ESRP1, FGFR-2 IIIb and FGFR-2 IIIc antibodies in 123 PDAC cases. ESRP1-expression vector and small interference RNA (siRNA) targeting ESRP1 were transfected into human PDAC cells, and cell growth, migration and invasion were analyzed. In vivo heterotopic and orthotopic implantations using ESRP1 overexpression clones were performed and effects on pancreatic tumor volumes and hepatic and pulmonary metastases determined. ESRP1 immunoreactivity was strong in the nuclei of cancer cells in well-to-moderately differentiated PDACs, but weak in poorly-differentiated cancers. Well-to-moderately differentiated cancers also exhibited high FGFR-2 IIIb and low FGFR-2 IIIc expression, whereas this ratio was reversed in the poorly-differentiated cancers. Increased ESRP1 expression was associated with longer survival by comparison with low-ESRP1 expression, and PANC-1 cells engineered to express ESRP1 exhibited increased FGFR-2 IIIb expression and decreased migration and invasion in vitro, whereas ESRP1 siRNA-transfected KLM-1 cells exhibited increased FGFR-2 IIIc expression and increased cell growth, migration and invasion. In vivo, ESRP1-overexpressing clones formed significantly fewer liver metastases as compared with control clones. ESRP1 regulates the expression pattern of FGFR-2 isoforms, attenuates cell growth, migration, invasion, and metastasis, and is a favorable prognostic factor in PDAC. Therefore, devising mechanisms to up-regulate ESRP1 may exert a beneficial therapeutic effect in PDAC

    Early transplantation of mesenchymal stem cells after spinal cord injury relieves pain hypersensitivity through suppression of pain-related signaling cascades and reduced inflammatory cell recruitment

    Get PDF
    Bone marrow-derived mesenchymal stem cells (BMSC) modulate inflammatory/immune responses and promote motor functional recovery after spinal cord injury (SCI). However, the effects of BMSC transplantation on central neuropathic pain and neuronal hyperexcitability after SCI remain elusive. This is of importance because BMSC-based therapies have been proposed for clinical treatment. We investigated the effects of BMSC transplantation on pain hypersensitivity in green fluorescent protein (GFP)-positive bone marrow-chimeric mice subjected to a contusion SCI, and the mechanisms of such effects. BMSC transplantation at day 3 post-SCI improved motor function and relieved SCI-induced hypersensitivities to mechanical and thermal stimulation. The pain improvements were mediated by suppression of protein kinase C-γ and phosphocyclic AMP response element binding protein expression in dorsal horn neurons. BMSC transplants significantly reduced levels of p-p38 mitogen-activated protein kinase and extracellular signal-regulated kinase (p-ERK1/2) in both hematogenous macrophages and resident microglia and significantly reduced the infiltration of CD11b and GFP double-positive hematogenous macrophages without decreasing the CD11b-positive and GFP-negative activated spinal-microglia population. BMSC transplants prevented hematogenous macrophages recruitment by restoration of the blood-spinal cord barrier (BSCB), which was associated with decreased levels of (a) inflammatory cytokines (tumor necrosis factor-α, interleukin-6); (b) mediators of early secondary vascular pathogenesis (matrix metallopeptidase 9); (c) macrophage recruiting factors (CCL2, CCL5, and CXCL10), but increased levels of a microglial stimulating factor (granulocyte-macrophage colony-stimulating factor). These findings support the use of BMSC transplants for SCI treatment. Furthermore, they suggest that BMSC reduce neuropathic pain through a variety of related mechanisms that include neuronal sparing and restoration of the disturbed BSCB, mediated through modulation of the activity of spinal-resident microglia and the activity and recruitment of hematogenous macrophages

    Early Transplantation of Mesenchymal Stem Cells After Spinal Cord Injury Relieves Pain Hypersensitivity Through Suppression of Pain-Related Signaling Cascades and Reduced Inflammatory Cell Recruitment

    Get PDF
    This novel study demonstrated that mesenchymal stem cell transplants after spinal cord injury reduce neuropathic pain, giving details of reduced pain signalling pathways affected. The work is essential in the translation of stem cell therapies for CNS regeneration.Bone marrow-derived mesenchymal stem cells (BMSC) modulate inflammatory/immune responses and promote motor functional recovery after spinal cord injury (SCI). However, the effects of BMSC transplantation on central neuropathic pain and neuronal hyperexcitability after SCI remain elusive. This is of importance because BMSC-based therapies have been proposed for clinical treatment. We investigated the effects of BMSC transplantation on pain hypersensitivity in green fluorescent protein (GFP)-positive bone marrow-chimeric mice subjected to a contusion SCI, and the mechanisms of such effects. BMSC transplantation at day 3 post-SCI improved motor function and relieved SCI-induced hypersensitivities to mechanical and thermal stimulation. The pain improvements were mediated by suppression of protein kinase C-γ and phosphocyclic AMP response element binding protein expression in dorsal horn neurons. BMSC transplants significantly reduced levels of p-p38 mitogen-activated protein kinase and extracellular signal-regulated kinase (p-ERK1/2) in both hematogenous macrophages and resident microglia and significantly reduced the infiltration of CD11b and GFP double-positive hematogenous macrophages without decreasing the CD11b-positive and GFP-negative activated spinal-microglia population. BMSC transplants prevented hematogenous macrophages recruitment by restoration of the blood-spinal cord barrier (BSCB), which was associated with decreased levels of (a) inflammatory cytokines (tumor necrosis factor-α, interleukin-6); (b) mediators of early secondary vascular pathogenesis (matrix metallopeptidase 9); (c) macrophage recruiting factors (CCL2, CCL5, and CXCL10), but increased levels of a microglial stimulating factor (granulocyte-macrophage colony-stimulating factor). These findings support the use of BMSC transplants for SCI treatment. Furthermore, they suggest that BMSC reduce neuropathic pain through a variety of related mechanisms that include neuronal sparing and restoration of the disturbed BSCB, mediated through modulation of the activity of spinal-resident microglia and the activity and recruitment of hematogenous macrophages

    Reliability and Validity of the Japanese Version of the Basel Assessment of Adherence to Immunosuppressive Medications Scale in Kidney Transplant Recipients

    Get PDF
    A valid and reliable instrument that can measure adherence is needed to identify nonadherent patients and to improve adherence. However, there is no validated Japanese self-report instrument to evaluate adherence to immunosuppressive medications for transplant patients. The purpose of this study was to determine the reliability and validity of the Japanese version of the Basel Assessment of Adherence to Immunosuppressive Medications Scale (BAASIS).; We translated the BAASIS into Japanese and developed the Japanese version of the BAASIS (J-BAASIS) according to the International Society of Pharmacoeconomics and Outcomes Research task force guidelines. We analyzed the reliability (test-retest reliability and measurement error) and validity of the J-BAASIS (concurrent validity with the medication event monitoring system and the 12-item Medication Adherence Scale) referring to the COSMIN Risk of Bias checklist.; A total of 106 kidney transplant recipients were included in this study. In the analysis of test-retest reliability, Cohen's kappa coefficient was found to be 0.62. In the analysis of measurement error, the positive and negative agreement were 0.78 and 0.84, respectively. In the analysis of concurrent validity with the medication event monitoring system, sensitivity and specificity were 0.84 and 0.90, respectively. In the analysis of concurrent validity with the 12-item Medication Adherence Scale, the point-biserial correlation coefficient for the "medication compliance" subscale was 0.38 (; P; < 0.001).; The J-BAASIS was determined to have good reliability and validity. Using the J-BAASIS to evaluate adherence can help clinicians to identify medication nonadherence and institute appropriate corrective measures to improve transplant outcomes

    Comparison of Mesenchymal Stromal Cells Isolated From Murine Adipose Tissue and Bone Marrow in the Treatment of Spinal Cord Injury

    Get PDF
    The use of mesenchymal stromal cell (MSC) transplantation to repair the injured spinal cord has shown consistent benefits in preclinical models. However, the low survival rate of grafted MSC is one of the most important problems. In the injured spinal cord, transplanted cells are exposed to hypoxic conditions and exposed to nutritional deficiency caused by poor vascular supply. Also, the transplanted MSCs face cytotoxic stressors that cause cell death. The aim of this study was to compare adipose-derived MSCs (AD-MSCs) and bone marrow-derived MSCs (BM-MSCs) isolated from individual C57BL6/J mice in relation to: (i) cellular characteristics, (ii) tolerance to hypoxia, oxidative stress and serum-free conditions, and (iii) cellular survival rates after transplantation. AD-MSCs and BM-MSCs exhibited a similar cell surface marker profile, but expressed different levels of growth factors and cytokines. To research their relative stress tolerance, both types of stromal cells were incubated at 20.5% O2 or 1.0% O2 for 7 days. Results showed that AD-MSCs were more proliferative with greater culture viability under these hypoxic conditions than BM-MSCs. The MSCs were also incubated under H2O2-induced oxidative stress and in serum-free culture medium to induce stress. AD-MSCs were better able to tolerate these stress conditions than BMMSCs; similarly when transplanted into the spinal cord injury region in vivo, AD-MSCs demonstrated a higher survival rate post transplantation Furthermore, this increased AD-MSC survival post transplantation was associated with preservation of axons and enhanced vascularization, as delineated by increases in anti-gamma isotype of protein kinase C and CD31 immunoreactivity, compared with the BM-MSC transplanted group. Hence, our results indicate that AD-MSCs are an attractive alternative to BM-MSCs for the treatment of severe spinal cord injury. However, it should be noted that the motor function was equally improved following moderate spinal cord injury in both groups, but with no significant improvement seen unfortunately following severe spinal cord injury in either grou
    corecore