13 research outputs found

    Emblica extract prevents cisplatin-induced apoptosis in dermal papilla fibroblasts

    No full text
    Cisplatin is a widely prescribed anticancer agent that causes hair loss in patients. Since the dermal papilla (DP) fibroblasts are known to be a key mediator in controlling hair growth and loss, understanding the effect and underlying mechanism of cisplatin on these cells may lead to new strategy for hair loss protection in chemotherapy patients. Less is known regarding the effect of cisplatin on DP fibroblasts. We thus treated DP cells with cisplatin (0-250 mmol/L) and found that cisplatin induced DP cell death in a concentration-dependent manner. Our results showed that the mode of cisplatin-induced DP cell death was mainly through apoptosis mechanism. Our results also indicated that the intracellular reactive oxygen species (ROS) induction caused by cisplatin treatment was associated with DP cell apoptosis and cisplatin-induced apoptosiscould be attenuated by addition of antioxidant N-acetylcysteine (1 mmol/L) and glutathione (5 mmol/L). Moreover, subtoxicconcentrations (0-500 mg/mL) of Phyllanthus emblica Linn (emblica) extracts, a known natural antioxidant, showed a strong inhibition effect on cisplatin-induced intracellular ROS induction and subsequently protected DP cells from cisplatin-induced apoptosis

    Ethanolic Fenugreek Extract: Its Molecular Mechanisms against Skin Aging and the Enhanced Functions by Nanoencapsulation

    No full text
    Fenugreek, or Trigonella foenum-graecum L. (family Leguminosae) seeds, are typically used as food supplements to increase postnatal lactation. Fenugreek extract displays antioxidative and anti-inflammatory properties, but its mechanisms against skin aging have not been exploited. In this research, we are the first to define an in vitro collagenase inhibitory activity of fenugreek extract (IC50 = 0.57 ± 0.02 mg/mL), which is 2.6 times more potent than vitamin C (IC50 = 1.46 mg/mL). Nanoencapsulation has been applied to improve the extract stability, and subsequently enhanced its bioactivities. Liponiosome encapsulating fenugreek extract (LNF) was prepared using a high-speed homogenizer, resulting in homogeneous spherical nanoparticles with sizes in the range of 174.7 ± 49.2 nm, 0.26 ± 0.04 in PdI, and 46.6 ± 7.4% of entrapment efficiency. LNF formulation significantly facilitated a sustained release and significantly enhanced skin penetration over the extracts, suggesting a potential use of LNF for transdermal delivery. The formulated LNF was highly stable, not toxic to human fibroblast, and was able to enhance cell viability, collagen production, and inhibit MMP1, MMP9, IL-6, and IL-8 secretions compared to the extract in the co-cultured skin model. Therefore, ethanolic fenugreek extract and its developed LNF display molecular mechanisms against skin aging and could potentially be used as an innovative ingredient for the prevention of skin aging

    Hydrogen peroxide inhibits non-small cell lung cancer cell anoikis through the inhibition of caveolin-1 degradation

    No full text
    Anoikis or detachment-induced apoptosis plays an essential role in the regulation of cancer cell metastasis. Caveolin-1 (Cav-1) is a key protein involved in tumor metastasis, but its role in anoikis and its regulation during cell detachment are unclear. We report here that Cav-1 plays a key role as a negative regulator of anoikis through a reactive oxygen species (ROS)-dependent mechanism in human lung carcinoma H460 cells. During cell detachment, Cav-1 is downregulated, whereas ROS generation is upregulated. Hydrogen peroxide and hydroxyl radical are two key ROS produced by cells during detachment. Treatment of the cells with hydrogen peroxide scavengers, catalase and N-acetylcysteine, promoted Cav-1 downregulation and anoikis during cell detachment, indicating that produced hydrogen peroxide plays a primary role in preventing anoikis by stabilizing Cav-1 protein. Catalase and N-acetylcysteine promoted ubiquitination and proteasomal degradation of Cav-1, which is a major pathway of its downregulation during cell anoikis. Furthermore, addition of hydrogen peroxide exogenously to the cells inhibited Cav-1 downregulation by preventing the formation of Cav-1-ubiquitin complex, supporting the inhibitory role of endogenous hydrogen peroxide in Cav-1 degradation during cell detachment. Together, these results indicate a novel role of hydrogen peroxide as an endogenous suppressor of cell anoikis through its stabilizing effect on Cav-1

    Optimization of polylactic-co-glycolic acid nanoparticles containing itraconazole using 23 factorial design

    No full text
    This study investigated the utility of a 23 factorial design and optimization process for polylactic-co-glycolic acid (PLGA) nanoparticles containing itraconazole with 5 replicates at the center of the design. Nanoparticles were prepared by solvent displacement technique with PLGAX1 (10, 100 mg/mL), benzyl benzoateX2 (5, 20 μg/mL), and itraconazoleX3 (200, 1800 μg/mL). Particle size (Y1), the amount of itraconazole entrapped in the nanoparticles (Y2), and encapsulation efficiency (Y3) were used as responses. A validated statistical model having significant coefficient figures (P<.001) for the particle size (Y1), the amount of itraconazole entrapped in the nanoparticles (Y2), and encapsulation efficiency (Y3) as function of the PLGA (X1), benzyl benzoate (X2), and itraconazole (X3) were developed: Y1=373.75+66.54X1+52.09X2+105.06X3−4.73X1X2+46.30X1X3; Y2=472.93+73.45X1+ 169.06X2+333.03X3+62.40X1X3+141.49X2X3; Y3= 57.36+6.53X1+15.52X2−12.59X3+1.01X1X3+ 1.73X2X3.X1,X2, andX3 had a significant effect (P<.001) onY1,Y2, andY3. The particle size, the amount of itraconazole entrapped in the nanoparticles, and the encapsulation efficiency of the 4 formulas were in agreement with the predictions obtained from the models (P<.05). An overlay plot for the 3 responses shows the boundary in whichY1 shows the boundary in which a number of combinations of concentration of PLGA, benzyl benzoate, and itraconazole will result in a satisfactory process. Using the desirability approach with the same constraints, the solution composition having the highest overall desirability (D=0.769) was 10 mg/mL of PLGA, 16.94 μg/mL of benzyl benzoate, and 1001.01 μg/mL of itraconazole. This approach allowed the selection of the optimum formulation ingredients for PLGA nanoparticles containing itraconazole of 500 μg/mL
    corecore