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Nitric Oxide Negatively Regulates Fas CD95-induced
Apoptosis through Inhibition of Ubiquitin-Proteasome-
mediated Degradation of FLICE Inhibitory Protein*
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Stimulation of cell surface Fas (CD95) results in recruitment of
cytoplasmic proteins and activation of caspase-8,which in turn acti-
vates downstream effector caspases leading to programmed cell
death. Nitric oxide (NO) plays a key role in the regulation of apo-
ptosis, but its role in Fas-induced cell death and the underlying
mechanism are largely unknown. Here we show that stimulation of
the Fas receptor by its ligand (FasL) results in rapid generation of
NO and concomitant decrease in cellular FLICE inhibitory protein
(FLIP) expression without significant effect on Fas and Fas-associ-
ated death domain (FADD) adapter protein levels. FLIP down-reg-
ulation as well as caspase-8 activation and apoptosis induced by
FasL were all inhibited by the NO-liberating agent sodium nitro-
prusside and dipropylenetriamine NONOate, whereas the NO syn-
thase inhibitor aminoguanidine and NO scavenger 2-(4-carboxy-
phenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (PTIO)
had opposite effects, indicating an anti-apoptotic role of NO in the
Fas signaling process. FasL-induced down-regulation of FLIP is
mediated by a ubiquitin-proteasome pathway that is negatively reg-
ulated by NO. S-nitrosylation of FLIP is an important mechanism
rendering FLIP resistant to ubiquitination and proteasomal degra-
dation by FasL. Deletion analysis shows that the caspase-like
domain of FLIP is a key target for S-nitrosylation by NO, andmuta-
tions of its cysteine 254 and cysteine 259 residues completely inhibit
S-nitrosylation, leading to increased ubiquitination and proteaso-
mal degradation of FLIP. These findings indicate a novel pathway
for NO regulation of FLIP that provides a key mechanism for apo-
ptosis regulation and a potential new target for intervention in
death receptor-associated diseases.

Apoptosis is a form of programmed cell death that serves to eliminate
unwanted cells and is essential for the maintenance of tissue homeosta-
sis. It can be triggered by extracellular signals via death receptors that
belong to the tumor necrosis factor receptor family (1, 2). In particular,
Fas (CD95/Apo-1) plays a crucial role in maintaining the immune sys-
tem by inducing apoptosis of immune cells as well as in killing harmful
cells such as cancerous cells (3). Defects in the apoptosis regulatory
mechanisms of the Fas/FasL system often result in lymphoproliferative

disorders and autoimmune diseases (4–6) as well as tumor outgrowth
in vivo (7). The Fas/FasL system also plays important roles in various
apoptosis conditions such as those evoked by anti-tumor agents, viral
infections, and irradiation (8–11).
Activation of the Fas receptor by FasL triggers a complex cascade of

intracellular events that requires Fas-associated death domain (FADD)3

adapter protein and the formation of death-inducing signaling complex,
leading to caspase-8 activation and apoptosis (12, 13). Although FasL
binding to its receptor is required for such activation, Fas surface
expression does not necessarily render cells susceptible to FasL-induced
cell death, indicating that inhibitors of the apoptosis signaling pathway
exist and play a role (3, 4). FLICE-inhibitory protein (FLIP) is a key
apoptosis regulatory protein of the death receptor-mediated pathway.
FLIP inhibits apoptotic signaling by interfering with the binding of
caspase-8 to FADD at the death-inducing signaling complex (14, 15).
FLIP is involved in rendering cells resistant to death receptor-mediated
apoptosis in various cell types (14–19), and elevated expression of FLIP
is associatedwith tumor cells that can escape from immune surveillance
in vivo (7). Furthermore, down-regulation of FLIP by cytotoxic agents
has been shown to sensitize cells to Fas-mediated apoptosis (20).
Endogenously produced nitric oxide (NO) synthesized from L-argi-

nine by NO synthase is a mediator of a variety of physiological and
pathological processes (21, 22).NOhas been shown to possess both pro-
and anti-apoptotic functions depending on cell type, redox status, and
type and dose of NO-modulating agents (23, 24). The apoptosis-induc-
ing effect of NO was attributed to its ability to induce oxidative stress
and caspase activation (25). On the other hand, endogenous NO pro-
duction or exposure to appropriate amounts ofNOhas been reported to
inhibit apoptosis in several cell types (26, 27). Likewise, NO has been
shown to inhibit cell death induced by a variety of agents including
chemotherapeutic agents, viral infections, and death ligands (24, 28, 29).
The mechanisms by which NO regulates apoptosis are not well under-
stood, but both mitochondrial and death receptor pathways of apopto-
sis are known to be involved (30, 31). In the present study we attempted
to investigate the role of NO in Fas receptor-mediated apoptosis and
determine its regulatory mechanisms using pharmacological and
genetic manipulation approaches. Our findings demonstrate an impor-
tant role of NO in FLIP regulation and its anti-apoptotic function in Fas
death signaling. The mechanism by which NO regulates FLIP involves

* This work was supported in part by the National Institutes of Health Grant HL071545
and by Thailand Research Fund Royal Golden Jubilee 5.Q.CU.46/A.1. The costs of
publication of this article were defrayed in part by the payment of page charges. This
article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C.
Section 1734 solely to indicate this fact.

1 To whom correspondence may be addressed. E-mail: ubonthip.n@chula.ac.th.
2 To whom correspondence may be addressed. E-mail: yrojanasakul@hsc.wvu.edu.

3 The abbreviations used are: FADD, Fas-associated death domain; FLIP, FLICE-inhibitory
protein; TRAF-2, tumor necrosis factor receptor-associated factor-2; AG, aminoguani-
dine; SNP, nitroprusside; PTIO, 2-(4-carboxyphenyl)-4,4,5,5-tetramethyl-imidazoline-
1-oxyl-3-oxide; CHAPS, 3-[(3-cholamidiopropyl)-1] propane sulfonate; DPTA, dipro-
pylenetriamine NONOate.

THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 280, NO. 51, pp. 42044 –42050, December 23, 2005
Printed in the U.S.A.

42044 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 280 • NUMBER 51 • DECEMBER 23, 2005



S-nitrosylation and its inhibition of ubiquitin-proteasomal degradation,
thus revealing the existence of a novel mechanism of cell death regula-
tion that might be exploited in death receptor-induced apoptosis of
neoplastic and immune cells.

MATERIALS AND METHODS

Cells and Reagents—The human bronchial epithelial cell line
BEAS-2B was obtained from the American Type Culture Collection
(Mannassas, VA). The cells were cultured in Dulbecco’s modified
Eagle’s medium (Invitrogen) containing 5% fetal bovine serum, 2 mM

L-glutamine, 20 mM HEPES, 100 units/ml penicillin, and 100 �g/ml
streptomycin in a 5% CO2 environment at 37 °C. Recombinant FasL
(SuperFasL), monoclonal antibody against FLIP (Dave-2), and the NO
donor DPTA NONOate were purchased from Alexis Biochem (San
Diego, CA). Antibodies for Fas, FADD, and peroxidase-labeled second-
ary antibodies to IgG and protein A-agarose were obtained from Santa
Cruz Biotechnology (Santa Cruz, CA). Antibodies for ubiquitin, S-ni-
trosocysteine, and �-actin were from Sigma. The NO donor sodium
nitroprusside (SNP), NO inhibitors amino-guanidine (AG), 2-(4-car-
boxy-phenyl)-4,4,5,5 tetramethylimidazoline-1-oxy-3-oxide (PTIO),
and caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-(OMe) flu-
oromethyl ketone were from Sigma. The transfecting agent Lipo-
fectamine Plus was purchased from Invitrogen, and the caspase-8 flu-
orometric substrate IETD-amino-4-methyl coumarin (AMC) was from
Biovision Inc. (Mountain View, CA).

Plasmid Construction and Transfection—The pcDNA3-FLIPL plas-
mid was generously provided by Dr. C. Stehlik (West Virginia Univer-
sity Cancer Center, Morgantown, WV). The open reading frame of
FLIPL and ubiquitin were amplified by high fidelity PCR (Stratagene)
from the corresponding expressed sequence tags (ESTs) and cloned into
pcDNA3 expression vectors containing the N-terminal Myc epitope
tag. Myc-tagged FLIPCys/Ala was generated using the QuikChange
mutagenesis kit (Stratagene). Authenticity of all constructs was verified
by DNA sequencing. Transient transfection was performed using Lipo-
fectamine Plus (Invitrogen) according to the manufacturer’s instruc-
tions at 80–90% confluency. The amount of DNAwas normalized in all
transfection experimentswith pcDNA3. Expression of proteinswas ver-
ified by Western blotting or immunoprecipitation.

Caspase and Apoptosis Assays—Caspase-8 activity was determined
by fluorometric assay using the substrate IETD-AMC, which is specifi-
cally cleaved by the enzyme at the Asp residue to release the fluorescent
leaving group, AMC. Cell extracts containing 50 �g of protein were
incubated with 100 mM HEPES, pH 7.4, containing 10% sucrose, 0.1%
CHAPS, 10 mM dithiothreitol, and 50 �M caspase substrate in a total
reaction volume of 0.25 ml. The reaction mixture was incubated for 60
min at 37 °C. At the end of incubation, the liberated fluorescent group
AMC was determined fluorometrically at the excitation and emission
wavelengths of 380 and 460 nm, respectively. Apoptosis was determined
by incubating the cells with 10�g/mlHoechst 33342 (Molecular Probes,
Eugene, OR) for 30 min and scoring the percentage of cells having
intensely condensed chromatin and/or fragmented nuclei by UV
microscopy using the Pixera software (Leica, Germany).

NO Detection—The production of NO was assessed by flow cytom-
etry using a fluorescent probe, 4,5-diaminofluorescein diacetate
(Molecular Probes) according to themanufacturer’s instruction. Briefly,
cells (1� 106/ml) were loaded with 10 �M 4,5-diaminofluorescein diac-
etate for 30 min at 37 °C, after which they were thoroughly washed. A
FACSort (BD Biosciences) flow cytometer equipped with a 488-nm
argon ion laser and supplied with the Cell Quest software was applied to
measure NO levels in the cells. Signals were obtained using a 538-nm

bandpass filter. Each determination is based on mean fluorescence
intensity of 5000 cells.

Western Blot Analysis—Cell extracts were performed by incubating
the cells in lysis buffer containing 20 mM Tris-HCl, pH 7.5, 1% Triton
X-100, 150mMNaCl, 10% glycerol, 1 mMNa3VO4, 50mMNaF, 100mM

phenylmethylsulfonyl fluoride, and a commercial protease inhibitor
mixture (Roche Applied Science) for 20 min on ice. After insoluble
debris was pelletted by centrifugation at 14,000 � g for 15 min at 4 °C,
the supernatants were collected and determined for protein content
using the Bradfordmethod (Bio-Rad). Proteins (40�g) were resolved on
a reducing 10% SDS-polyacrylamide gel and transferred onto nitrocel-
lulosemembranes (Bio-Rad). The transferredmembranes were blocked
for 1 h in 5% nonfat dry milk in Tris-buffered Tween (25 mM Tris-HCl,
pH 7.4, 125 mM NaCl, 0.05% Tween 20) and incubated with the appro-
priate primary antibodies at 4 °C overnight. Membranes were washed 3
times with Tris-buffered Tween for 10 min and incubated with horse-
radish peroxidase-coupled isotype-specific secondary antibodies for 1 h
at room temperature. The immune complexes were detected by
enhanced chemiluminescence (ECL) detection system (AmershamBio-
sciences) and quantified using analyst/PC densitometry software (Bio-
Rad). Mean densitometry data from independent experiments were
normalized to result in cells in the control. The data were presented as
the mean � S.D. and analyzed by Student’s t test.

Immunoprecipitation—Cells were washed after treatments with ice-
cold phosphate-buffered saline and lysed in lysis buffer at 4 °C for 30
min. After centrifugation at 14,000 � g for 15 min at 4 °C, the superna-
tants were collected and determined for protein content. Cell lysates
containing 60 �g of protein were incubated with 12 �l of anti-Myc-
agarose beads (Santa Cruz Biotechnology) diluted with 12 �l of Sepha-
rose for 6 h at 4 °C. The immune complexes were then washed 3 times
with 20 volumes of lysis buffer, resuspended in 2� Laemmli sample
buffer, and boiled at 95 °C for 5 min. Immunoprecipitates containing
�20 �g of protein equivalents were separated by 10% SDS-PAGE and
analyzed by Western blot as described.

RESULTS

FasL Induces Apoptosis and Caspase-8 Activation in BEAS-2B
Cells—FasL has been reported to induce apoptosis in sensitive cells,
including lung epithelial cells (32–36). To study the role of NO in
Fas-mediated apoptosis, we first characterized cell death response to
FasL treatment in lung epithelial BEAS cells using Hoechst 33342
and caspase assays. Treatment of the cells with FasL caused a dose-
dependent increase in cell apoptosis over control levels, as indicated
by increased nuclear fluorescence and chromatin condensation and
fragmentation (Fig. 1). Approximately 8% of the treated cells showed
apoptotic nuclear morphology at the FasL concentration of 50 ng/ml
with the cell death response exceeding 25% at 250 ng/ml. Significant
apoptotic response was observed as early as 6 h and peaked at about
16 h post-treatment (data not shown). Because FasL is known to
induce apoptosis through a caspase-8-dependent pathway (3, 4), we
investigated the effect of FasL treatment on caspase-8 activity using
fluorogenic caspase-8 substrate IETD-AMC. Consistent with the
Hoechst apoptosis assay, our results indicated that FasL was able to
increase the activity of caspase-8 in BEAS cells in a dose-dependent
manner (Fig. 1B). The caspase inhibitor benzyloxycarbonyl-Val-Ala-
Asp-(OMe) fluoromethyl ketone (10 �M) potently suppressed FasL-
induced apoptosis and caspase-8 activation (data not shown), fur-
ther supporting an apoptotic mechanism.

NO Inhibits Fas-induced Apoptosis
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Nitric Oxide Inhibits FasL-induced Apoptosis and Caspase-8
Activation—NOhas been reported to have both pro- and anti-apoptotic
effects on cells depending on cell type, redox status, and stimulating
agents (23–25). In this study we found that NO has an inhibitory effect
on FasL-induced cell death in lung epithelial BEAS cells. Co-treatment
of the cells with FasL and NO donor, SNP or DPTA NONOate, signif-
icantly inhibited apoptosis comparedwith the FasL-treated control (Fig.
2A). In contrast, theNO inhibitorAGor PTIOpromoted this effect (Fig.
2A). The NOmodulators, when used alone at the indicated concentra-
tions, had no significant effect on cell death (not shown), indicating that
FasL was required for the induction of apoptosis under the test condi-
tions. To test whether the apoptosis-modulating effect ofNOwasmedi-
ated through the death receptor signaling pathway, cells were similarly
treated with FasL and NO modulators, and cell lysates were prepared
and analyzed for caspase-8 activity. Fig. 2B shows that the NO donors,
SNP and DPTA NONOate, were able to inhibit caspase-8 activation by
FasL, whereas the NO inhibitors, AG and PTIO, promoted the FasL
effect.
Because AG is an inhibitor of inducible NO synthase, our results

suggest that FasLwas able to induceNOproduction, andAGwas able to
inhibit it. To test this possibility and to determine the NO modulating
effect of other test agents, BEAS cells were treated with FasL in the
presence or absence of various NO donors and inhibitors, and their
effect on cellular NO levels was determined by flow cytometry using
NO-specific probe 4,5-diaminofluorescein diacetate. As expected, FasL
was able to increase DAF fluorescence intensity over control levels, and
the NO inhibitors AG and PTIO suppressed this signal (Fig. 2C). In
contrast, the NO donors SNP and DPTANONOate promoted the NO-
inducing effect of FasL.

FasL Induces FLIP Down-regulation and Its Inhibition by Nitric
Oxide—In searching for a mechanism that might explain the apo-
ptosis regulatory effect of NO on FasL-induced cell death, we exam-
ined by immunoblotting the expression levels of key proteins known

to be relevant to the mechanisms of Fas signaling, including the Fas
death receptor, the adapter protein FADD, and the anti-apoptotic
FLIP, which is known to bind caspase 8 and FADD and suppress
apoptosis induction by death ligands (14, 15). Among these, only the
level of FLIP was affected by the FasL treatment in a dose- and
time-dependent manner (Figs. 3,A and B). In the cell line tested, only
the long isoform of FLIP (FLIPL) could be detected, whereas the
short FLIPS protein was undetectable. Because FLIPs have been
reported to be down-regulated via the ubiquitin proteasome-de-
pendent pathway under different conditions, including peroxisome
proliferator-activated receptor ligand and p53 activation, chemo-
therapeutic administration, and adenoviral infection (37–40), we
therefore investigated whether the down-regulation of FLIP by FasL
is also mediated by this pathway. Cells were treated with lactacystin,
a highly specific proteasome inhibitor, and its effect on FasL-induced
FLIP down-regulation was examined by Western blot analysis. Fig.
3A shows that lactacystin was able to inhibit FLIP down-regulation,
indicating proteasomal degradation of FLIP by FasL. The result was
confirmed by the fact that another proteasome inhibitor, MG132,
also inhibited the decrease in FLIP expression caused by FasL (data
not shown). These results along with subsequent data showing the
effect of FasL on FLIP ubiquitination support the role of the ubiq-
uitin-proteasome pathway in FasL-induced degradation of FLIP.
To test whetherNOmightmodulate Fas signaling through FLIP, cells

were treated with FasL in the presence or absence of NO donors or
inhibitors, and their effect on FLIP expression levels was determined by
immunoblotting. Fig. 3B shows that the addition of the NO donor SNP
or DPTA NONOate strongly increased FLIP levels over FasL-treated
control, whereas theNO inhibitor AG showed an opposite effect. These
results along with our earlier finding on the protective effect of NO on
FasL-induced cell death (Fig. 2) suggest that NO may mediate its anti-
apoptotic effect by interfering with the FLIP degradation mechanism.

FIGURE 1. FasL induces apoptosis and caspase-8 activation in human lung epithelial
BEAS cells. A, subconfluent (90%) monolayers of BEAS cells were exposed to FasL (0 –250
ng/ml) for 16 h and analyzed for apoptosis by Hoechst 33342 assay. B, fluorometric assay
of caspase-8 activity in cells treated with FasL (0 –250 ng/ml) for 3 h. Cell lysates (50 �g of
protein) were prepared and determined for caspase-8 activity using the fluorometric
substrate IETD-AMC. Data are the mean � S.D. (n � 4). *, p � 0.05 versus non-treated
control. C–F, morphologic analysis of apoptosis by Hoechst assay. Cells were treated with
0, 50, 100, and 250 ng/ml of FasL for 16 h. Apoptotic cells exhibit shrunken nuclei with
bright nuclear fluorescence. Original magnification, �400.

FIGURE 2. Effects of NO modulators on FasL-induced apoptosis, caspase-8 activa-
tion, and NO production. A, subconfluent (90%) monolayers of BEAS cells were pre-
treated with the NO donor SNP (300 �g/ml) or DPTA NONOate (200 �M) or with the NO
inhibitor AG (100 �g/ml) or PTIO (100 �M) for 1 h. The cells were then treated with FasL
(100 ng/ml) for 16 h and analyzed for apoptosis by Hoechst assay. B, fluorometric analysis
of caspase-8 activity, determined at 3 h after FasL treatment. C, flow cytometric analysis
of NO production by DAF fluorescence at 1 h after FasL treatment. Cells were treated with
FasL and NO modulators as described. Values are relative DAF fluorescence increase over
control level. Plots are the mean � S.D. (n � 3). *, p � 0.05 versus non-treated control; **,
p � 0.05 versus FasL-treated control.
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FasL Induces FLIP Ubiquitination and Its Inhibition by Nitric
Oxide—Because the proteasome acts on proteins destined to be
degraded by ubiquitination, we investigated whether FLIP ubiquiti-
nation is induced by FasL. Immunoprecipitation studies were per-
formed in cells transiently transfected with plasmids encoding ubiq-
uitin and Myc-tagged FLIP, and the resulting immune complexes
were analyzed by SDS-PAGE immunoblotting using anti-ubiquitin
antibody. Fig. 4 shows that in the absence of FasL stimulation, min-
imum ubiquitinated FLIP was produced. Upon FasL treatment, the
ubiquitin-FLIP conjugate was greatly increased in a time-dependent
manner (Fig. 4). This effect could be observed as early as 1 h and
peaked at 2 h after FasL treatment. Pretreatment of the cells with NO
donors, SNP, or DPTA NONOate potently inhibited FasL-induced
ubiquitination of FLIP, whereas the NO inhibitors AG and PTIO
enhanced this ubiquitination process (Fig. 4). These results suggest
that NO was able to inhibit FLIP ubiquitination, thus preventing its
degradation by the proteasome.

Nitric Oxide Induces S-Nitrosylation of FLIP and Inhibits Its
Ubiquitination—Increasing evidence indicates thatNOplays an impor-
tant role in apoptosis through S-nitrosylation of several key apoptosis
regulatory proteins (41, 42). To determine whether NO could nitrosy-
late FLIP, which has not previously been demonstrated, we performed
immunoprecipitation experiments evaluating the effect NO on S-ni-
trosylation of FLIP. Cells expressing ectopic myc-FLIP were treated
with FasL and NO modulators, and cell lysates were immunoprecipi-
tated and analyzed by Western blot using anti-S-nitrosocysteine anti-
body. Fig. 5 shows that in the absence of NO modulators, FasL had
minimal effect on S-nitrosylation of FLIP. However, upon the addition
of the NO donors, SNP or DPTA NONOate, the nitrosylated level of

FLIP was strongly increased. In contrast, the NO inhibitors, AG or
PTIO, inhibited this nitrosylation. These results suggest that S-nitrosy-
lation may be a key mechanism utilized by NO to regulate FLIP ubiq-
uitination and proteasomal degradation.

The Caspase-like Domain Is a Target for S-Nitrosylation of FLIP—To
study the mechanism of S-nitrosylation of FLIP, we first determined
which domain(s) of FLIP is responsible for its nitrosylation. We con-
structed a series of FLIP deletion and mutation plasmids (�1-�4) and
tested their effect on S-nitrosylation by NO (Fig. 6). Partial deletion of
the caspase-like domain of FLIP (amino acids 329–480, �1) had no
effect on S-nitrosylation induced by the NO donor SNP, whereas com-
plete deletion of this domain (�2) as well as the death effector domain 2
(�3) strongly inhibited this effect when the plasmids were transfected
into cells and subsequently treated with FasL (Fig. 6B). Immunoprecipi-
tation and ubiquitination studies also showed that the NO donor SNP
was able to inhibit FasL-induced ubiquitination of FLIP and its �1
mutant but not the�2 and�3mutants (Fig. 7), indicating the protective
effect of S-nitrosylation on FLIP ubiquitination. The results of this study
also suggest that the amino acid sequence difference between�1 and�2
(or the amino acid sequence 233–328 of the caspase-like domain) is
essential for S-nitrosylation of FLIP.

Cysteines 254 and 259 Are the Principal Target Sites for S-Nitrosyla-
tion of FLIP—To determine the target site(s) for S-nitrosylation of FLIP,
we examined the amino acid sequence in the target region of caspase-
like domain. Because S-nitrosylation involves the transfer ofNO� group

FIGURE 3. Down-regulation of FLIP by FasL is modulated by NO. A, Western blot
analysis of FLIP in response to FasL treatment. Subconfluent monolayers of BEAS cells
were treated with FasL (0 –100 ng/ml) in the presence or absence lactacystin (10 �M) for
12 h. The cells were then washed with ice-cold phosphate-buffered saline and extracted
with SDS sample buffer. The cell extracts were separated on polyacrylamide-SDS gels,
transferred, and probed with antibodies specific for Fas, FADD, and FLIP. Blots were
reprobed with �-actin antibody to confirm equal loading of samples. The immunoblot
signals were quantified by densitometry, and mean data from independent experiments
(one of which is shown here) were normalized to the result obtained in cells in the
absence of FasL (control). Plots are the mean � S.D. (n � 3). *, p � 0.05 versus control; **,
p � 0.05 versus FasL-treated control. B, time-dependent effect of FasL treatment on FLIP
expression. Cells were treated for the indicated time with FasL (100 ng/ml) and analyzed
for FLIP by Western blot. *, p � 0.05 versus non-treated control (n � 3). C, effect of NO
modulators on FasL-induced FLIP down-regulation. Cells were pretreated with the NO
donor SNP (300 �g/ml) or DPTA NONOate (200 �M), or with the NO inhibitor AG (100
�g/ml) or PTIO (100 �M), for 1 h, after which they were treated with FasL (100 ng/ml) for
12 h and analyzed for FLIP by Western blot. *, p � 0.05 versus FasL-treated control (n � 3).

FIGURE 4. NO regulation of FLIP is mediated through the ubiquitin pathway. A, BEAS
cells were transiently transfected with myc-FLIP and ubiquitin plasmids and then treated
1 day later with FasL (100 ng/ml) for the indicated times in the presence or absence of
SNP (300 �g/ml), DPTA NONOate (200 �M), AG (100 �g/ml), or PTIO (100 �M). Lysates
were immunoprecipitated (IP) by incubation with 12 �l of anti-Myc-agarose beads
diluted with 12 �l of Sepharose for 6 h at 4 °C. The beads were washed, boiled, and
subjected to 10% polyacrylamide gel electrophoresis. The separated proteins were ana-
lyzed by Western blot (WB) with antibody against ubiquitin (Ub). Blots were also probed
with Myc antibody to confirm equal loading of samples.

FIGURE 5. S-Nitrosylation of FLIP by NO. BEAS cells were transiently transfected with
Myc-FLIP plasmid and treated 1 day later with FasL (0 –100 ng/ml) in the presence or
absence of SNP (300 �g/ml), DPTA NONOate (200 �M), AG (100 �g/ml), or PTIO (100 �M)
for 2 h. Lysates were immunoprecipitated (IP) using Myc antibody and analyzed by West-
ern blot (WB) using S-nitrosocysteine antibody. The density of S-nitrosylated FLIP bands
was determined by densitometry and normalized against non-treated control band.
Plots are the mean � S.D. (n � 3). *, p � 0.05 versus FasL-treated control.
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to an active site on cysteine residues, we examined the presence of these
residues in the target region and found two at position 254 and 259.We
mutated the two residues (�4) to determine whether the mutations
interfere with the S-nitrosylation of FLIP. As shown in Fig. 6B, muta-
tions of these cysteine residues (to alanine) resulted in a complete inhi-
bition of FLIP nitrosylation. Fig. 7 also shows that suchmutations effec-
tively inhibited the protective effect of NO on FLIP ubiquitination,
supporting the role of S-nitrosylation in the ubiquitination process and
demonstrating the requirement of Cys-254 and Cys-259 in FLIP
nitrosylation. Mutation of either one of the cysteine residues had only a
partial effect on S-nitrosylation of FLIP (result not shown), indicating
that both residues are required for effective nitrosylation of the FLIP
protein.

Mutation of Cys-254 and Cys-259 Protects FasL-induced FLIP
Degradation—Inhibition of FLIP ubiquitination by NO should lead to a
decrease in proteasomal degradation of FLIP, and likewise, failure to
inhibit this ubiquitination in the FLIP Cys/Ala mutant should lead to its
increased degradation. As expected, our results show that theNOdonor
SNP was able to prevent FLIP degradation by FasL as indicated by its
increased expression level (Fig. 8). On the other hand, the NO donor
had no protective effect on the FLIP mutant, suggesting that S-nitrosy-
lation of FLIP, in addition to preventing ubiquitination, also protects
this molecule from FasL-induced proteasomal degradation.

DISCUSSION

The anti-apoptotic function of FLIP is tightly associated with its
expression levels, and down-regulation of FLIP is an important mecha-
nism to sensitize cells to receptor-mediated apoptosis (for review, see
Ref. 43). Although the importance of gene expression in regulating
apoptotic signal transduction has been emphasized in numerous stud-
ies, post-translational modifications such as ubiquitination and phos-
phorylation have recently emerged as important regulators of proteins
in the death receptor pathway (for reviews, see Refs. 44 and 45). Ubiq-
uitin-mediated degradation of FLIP by the proteasome has been impli-
cated under different conditions, including peroxisome proliferator-
activated receptor ligand and p53 activation, chemotherapeutic
administration, and viral infection (37–40). However, the mechanisms
underlying this regulation and in particular those relevant to Fas signal-
ing have not been demonstrated. Our results showed that treatment of
the cells with FasL resulted in a rapid ubiquitination and proteasomal
degradation of FLIPwith a concomitant increase in caspase-8 activation
and apoptosis. For proteins whose levels are regulated by ubiquitin-
proteasomal degradation, ubiquitination is induced by binding of the
proteins to E3 ubiquitin ligases (for review, see Ref. 46). In this regard,
FLIP has been shown to bind and activate tumor necrosis factor recep-
tor-associated factor (TRAF)-2, which contains a RING finger domain
known to possess E3 ligase activity (47, 48). It is, therefore, conceivable
that during Fas stimulation TRAF-2 is recruited to the death signaling
complex along with FLIP and exerts its ligase activity leading to FLIP
ubiquitination and degradation. Several other mechanisms, including
up-regulation of TRAF-2 or other types of FLIP-binding E3 ubiquitin
ligases, could also be envisioned.
Increasing evidence show that NO plays an important role in regu-

lating many key proteins in the death receptor as well as mitochondrial
pathway of apoptosis. Although it is more widely accepted that mito-

FIGURE 6. The caspase-like domain of FLIP is required for S-nitrosylation. A, sche-
matic structures of FLIP and various constructs (�1-�4) used in this study. DED stands for
death effector domain. Amino acids present in each construct are labeled. Asterisks indi-
cate Cys-254 and Cys-259 to alanine mutations in the caspase-like domain. B, S-nitrosy-
lation of FLIP and its mutants were analyzed by transient transfection and immunopre-
cipitation (IP) with Myc antibody as described in Fig. 5. The density of S-nitrosylated
bands was determined by densitometry and normalized against FasL-treated control
bands. Plots are the mean � S.D. (n � 3). *, p � 0.05 versus myc-FLIP-transfected control.
WB, Western blot.

FIGURE 7. S-Nitrosylation inhibits ubiquitination of FLIP by FasL. BEAS cells were
transiently transfected with ubiquitin and Myc-FLIP or its mutant plasmids. One day after
the transfection, cells were treated with FasL (100 ng/ml) in the presence or absence of
SNP (300 �g/ml) for 2 h, and cell lysates were prepared for immunoprecipitation using
Myc antibody. The immunoprecipitated (IP) proteins were analyzed by Western blot
(WB) with antibody against ubiquitin. Band densities were normalized against FasL-
treated controls. Plots are the mean � S.D. (n � 3). *, p � 0.05 versus FasL-treated
controls.

FIGURE 8. S-Nitrosylation of Cys-254 and Cys-259 inhibits FLIP degradation induced
by FasL. BEAS cells were transiently transfected with myc-FLIP or �4 mutant plasmid and
then treated 1 day later with FasL (100 ng/ml) in the presence or absence of SNP (300
�g/ml) for 12 h. Lysates were immunoprecipitated with Myc antibody and analyzed by
Western blot using antibody against FLIP. Band densities were normalized against non-
treated controls. Plots are the mean � S.D. (n � 3). *, p � 0.05 versus non-treated controls.
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chondrial depolarization and activation of caspase-3 play amajor role in
NO regulation of apoptosis (49, 50), recent studies show that NO is also
involved in death receptor signaling (29, 31, 50). It is suggested that the
anti-apoptotic effect of NO can be mediated through a number of
mechanisms such as nitrosylation and inactivation of caspases, up-reg-
ulation of p53, and heat shock proteins (51). In Fas-mediated apoptosis,
NO has been reported to have anti-apoptotic effect (29, 52), but its
underlying mechanisms of regulation are not well characterized. Con-
sistent with previous reports in other cell systems (29, 52), our results
showed that NOwas able to inhibit FasL-induced apoptosis in epithelial
BEAS cells. We further showed that FasL treatment induced down-
regulation of FLIP without significant effect on Fas or FADD expression
levels. Co-administration of FasL with the NO donors, SNP or DPTA
NONOate, attenuated the apoptotic effect of FasL, whereas the NO
inhibitor AG or PTIO promoted it, further supporting the anti-apo-
ptotic role of NO in the Fas signaling process.
NO has previously been shown to prevent apoptosis induced by che-

motherapeutic agents through complexmechanisms that involve mito-
chondrial signaling and cGMP/protein kinase G-mediated up-regula-
tion of Bcl-2 (24, 28, 53–55). However, in most cases the protection of
NO against apoptosis is independent of cGMP, suggesting alternate
pathways of regulation. Furthermore, the mechanisms by which NO
regulates apoptosis in the death receptor pathway have not been clearly
elucidated. AlthoughNO can up-regulate other anti-apoptotic proteins
such as heme oxygenase-1 andmetallothionein (56, 57), the most effec-
tive way of NO-mediated inhibition of apoptosis is S-nitrosylation of
key apoptotic proteins (41, 42). In this study we demonstrated that NO
can nitrosylate FLIP and prevent its degradation via the ubiquitin-pro-
teasome pathway. Gene deletion analysis revealed the importance of the
caspase-like domain of FLIP in the nitrosylation process. Mutational
analysis further showed that Cys-254 and Cys-259 of FLIP were respon-
sible for its nitrosylation. Although S-nitrosylation of cysteine residues
was shown to be important in preventing FLIP ubiquitination, it is not
absolutely required for this inhibition since FLIP lacking the two cys-
teine residues (�2 and �3) can still be ubiquitinated to some degree,
indicating that the ubiquitination and S-nitrosylation processes are
functionally separated and differently regulated by NO.
It has been suggested that NO might inhibit Fas-mediated apoptosis

through a decrease in Fas expression (58). However, our Western blot
analysis failed to detect the inhibitory effect of SNP on Fas expression at
the concentrations that inhibited FasL-induced apoptosis. A similar
finding was also observed in granulosa cells (29), although FLIP expres-
sion was not detected in that study. The likely explanation for the
observed discrepancy may be the difference in experimental design and
cell type used. It might be possible that other mechanisms of NO regu-
lation such as induction of heat shock proteins (59), up-regulation of
Bcl-2 (58), and suppression of Bax expression (59) may also be involved
in this process. The established importance of FLIP in death receptor
signaling, however, supports the role of this molecule and its regulation
by NO in FasL-induced apoptosis.
Although FLIP has been perceived primarily as an inhibitor of apo-

ptosis, increasing evidence also suggest that this protein plays an addi-
tional role in cell survival and proliferation. For examples, overexpres-
sion of FLIP has been shown to activate NF-�B (60–62), and inhibition
of this pathway by dominant expression of its inhibitory subunit I�B
decreased cell survival (63). FLIP has also been shown to activate NF-�B
through its ability to recruit key adapter proteins such as TRAF-2 and
receptor-interacting protein-1 to the death signaling complex (47, 62).
Because TRAF-2 may have a role in ubiquitination of FLIP as earlier
described and since NO can modulate this ubiquitination process, it is

likely that NO may also play a role in cell survival regulation through
NF-�B signaling. Thus, NOmay be a key regulator of death and survival
in the death receptor pathway, and it cannot only determine whether
the apoptosis pathway is turned on or off but also allows the cell to
switch between cell death and survival.
In conclusion, our data provide evidence that FasL can induce down-

regulation of FLIP through proteasome-mediated degradation. NO
negatively regulates this process through its ability to inhibit ubiquiti-
nation. It is also worth noting that this regulation occurs via S-nitrosy-
lation of FLIP, which interferes with the ubiquitination process. This
novel function of NO in the death receptor pathway of apoptosis may
have important implications in cell death resistance and pathogenesis of
related apoptosis disorders.
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