24 research outputs found

    A fast ultra performance supercritical fluid chromatography-tandem mass spectrometric method for profiling of targeted phytosterols

    No full text
    Phytosterols are essential structural components of plant cell membranes and possess health-related benefits, including lowering blood cholesterol levels in humans. Numerous analytical methods are being used to profile plant and animal sterols. Chromatography hyphenated to tandem mass spectrometry, is a better option due to its specificity, selectivity, and sensitivity. An ultra-performance supercritical fluid chromatography hyphenated with atmospheric pressure chemical ionization (APCI) tandem mass spectrometric method was developed and eval-uated for fingerprint analysis of seven phytosterols. Mass spectrometry fragmentation behavior was used for phytosterol identification, and multiple reaction monitoring scanning was utilized for phytosterol confirmation, where APCI outperformed superiority in terms of ion intensity, particularly in the production of [M + H-H2O]+ ions rather than [M + H]+ ions. The chromatographic conditions were thoroughly evaluated, and the ionization parameters were optimized as well. In a 3 min. run, the seven phytosterols were separated concurrently. The calibration and repeatability tests were conducted to check the instrument's performance, and the results indicated that all of the phytosterols tested had correlation coefficients (r2) greater than 0.9911 over the con-centration range of 5-5000 ng/mL. The limit of quantification was below 20 ng/mL for all the tested analytes except for stigmasterol and campesterol. The partially validated method was applied for the evaluation of phytosterols in pure coconut oil and palm oil in order to demonstrate its applicability. Total sterols in coconut and palm oils were 126.77 ng/mL and 101.73 ng/mL, respectively. In comparison to earlier methods of phytosterol analysis, the novel method offers a far faster, more sensitive, and more selective analytical process

    Harmonizing lipidomics: NIST interlaboratory comparison exercise for lipidomics using SRM 1950-Metabolites in Frozen Human Plasma.

    No full text
    As the lipidomics field continues to advance, self-evaluation within the community is critical. Here, we performed an interlaboratory comparison exercise for lipidomics using Standard Reference Material (SRM) 1950-Metabolites in Frozen Human Plasma, a commercially available reference material. The interlaboratory study comprised 31 diverse laboratories, with each laboratory using a different lipidomics workflow. A total of 1,527 unique lipids were measured across all laboratories and consensus location estimates and associated uncertainties were determined for 339 of these lipids measured at the sum composition level by five or more participating laboratories. These evaluated lipids detected in SRM 1950 serve as community-wide benchmarks for intra- and interlaboratory quality control and method validation. These analyses were performed using nonstandardized laboratory-independent workflows. The consensus locations were also compared with a previous examination of SRM 1950 by the LIPID MAPS consortium. While the central theme of the interlaboratory study was to provide values to help harmonize lipids, lipid mediators, and precursor measurements across the community, it was also initiated to stimulate a discussion regarding areas in need of improvement

    Combined lipidomic and proteomic analysis of isolated human islets exposed to palmitate reveals time-dependent changes in insulin secretion and lipid metabolism

    No full text
    Studies on the pathophysiology of type 2 diabetes mellitus (T2DM) have linked the accumulation of lipid metabolites to the development of beta-cell dysfunction and impaired insulin secretion. In most in vitro models of T2DM, rodent islets or beta-cell lines are used and typically focus is on specific cellular pathways or organs. Our aim was to, firstly, develop a combined lipidomics and proteomics approach for lipotoxicity in isolated human islets and, secondly, investigate if the approach could delineate novel and/or confirm reported mechanisms of lipotoxicity. To this end isolated human pancreatic islets, exposed to chronically elevated palmitate concentrations for 0, 2 and 7 days, were functionally characterized and their levels of multiple targeted lipid and untargeted protein species determined. Glucosestimulated insulin secretion from the islets increased on day 2 and decreased on day 7. At day 7 islet insulin content decreased and the proinsulin to insulin content ratio doubled. Amounts of cholesterol, stearic acid, C16 dihydroceramide and C24: 1 sphingomyelin, obtained from the lipidomic screen, increased time-dependently in the palmitate-exposed islets. The proteomic screen identified matching changes in proteins involved in lipid biosynthesis indicating up-regulated cholesterol and lipid biosynthesis in the islets. Furthermore, proteins associated with immature secretory granules were decreased when palmitate exposure time was increased despite their high affinity for cholesterol. Proteins associated with mature secretory granules remained unchanged. Pathway analysis based on the protein and lipid expression profiles implicated autocrine effects of insulin in lipotoxicity. Taken together the study demonstrates that combining different omics approaches has potential in mapping of multiple simultaneous cellular events. However, it also shows that challenges exist for effectively combining lipidomics and proteomics in primary cells. Our findings provide insight into how saturated fatty acids contribute to islet cell dysfunction by affecting the granule maturation process and confirmation in human islets of some previous findings from rodent islet and cell-line studies

    Analytical Methods in Lipidomics and Their Applications

    No full text
    corecore