904 research outputs found

    Light yield measurements of scintillator cocktails for use in detectors of neutrinoless double beta decay

    Get PDF
    Abstract The ongoing search for neutrinoless double beta decay is one of the most active fields in particle physics today. Neutrinoless double beta decay, if observed, will provide insight into physics beyond the standard model. Improving scintillator composition in order to optimize light yield and eliminate background is one way to increase detector sensitivity. This paper presents studies on the light yield of various scintillator cocktails, including quantum dot-doped scintillators

    Tailoring liquid crystal honeycombs by head-group choice in bird-like bent-core mesogens

    Get PDF
    We introduce a new class of mesogens that are bird-like in shape and form honeycomb-type supramolecular liquid crystals. They have a bent pi-conjugated aromatic core as wings, a linear or branched chain as the tail and a selection of functional headgroups. Honeycombs of non-centrosymmetric trigonal type (p3m1) are obtained, along with two different complex honeycomb superlattices (p31m and p2gg) and a randomized hexagonal mesophase (p6mm). The key determinant of the self-assembled structure is the nature of interaction of the headgroup with the glycerols at the ends of the wings. The structure depends on whether the sub-columns lying along the edges of the prismatic cells contain pure or mixed headgroups and wing-end hydrogen-bonding groups. Its assembly is further controlled by reducing the tail-chain volume, inducing out-of-plane buckling of the honeycomb. These two modes of symmetry breaking lead to structural polarity both in- and out-of-plane, opening the way to applications in devices relying on properties such as ferroelectricity and second harmonic generation

    Spacecraft Crew Cabin Condensation Control

    Get PDF
    A report discusses a new technique to prevent condensation on the cabin walls of manned spacecraft exposed to the cold environment of space, as such condensation could lead to free water in the cabin. This could facilitate the growth of mold and bacteria, and could lead to oxidation and weakening of the cabin wall. This condensation control technique employs a passive method that uses spacecraft waste heat as the primary wallheating mechanism. A network of heat pipes is bonded to the crew cabin pressure vessel, as well as the pipes to each other, in order to provide for efficient heat transfer to the cabin walls and from one heat pipe to another. When properly sized, the heat-pipe network can maintain the crew cabin walls at a nearly uniform temperature. It can also accept and distribute spacecraft waste heat to maintain the pressure vessel above dew point

    Body-centred cubic packing of spheres-the ultimate thermotropic assembly mode for highly divergent dendrons

    Get PDF
    We have synthesized sodium tris(alkoxy)benzoates in which one of the three alkyl chains branches further into three C 18 H 37 chains. These AB5 hyperbranched minidendrons melt directly into a body-centred cubic (BCC) mesophase formed by spherical "micelles". In contrast, their non-branched counterparts display various mesophases before they turn into BCC upon heating. This agrees with the predictions from a numerical geometric model that relates the shape of the molecular wedge to the type of mesophase they adopt. The spheres were found to shrink in volume upon heating and expand upon cooling, as molecules, in some cases nearly half of them, are ejected and reintegrated in the spheres. The ejection of dendrons is caused by their lateral thermal expansion. The BCC appears to be the ultimate mesophase for the extremely divergent wedges such as the hyperbranched minidendrons. In dendrons with chains of unequal length, the sphere size is fixed by the shorter chains, the longer ones back-folding or interdigitating to effectively widen the wedge. This new understanding of their assembly will help in designing new dendrons, e.g. for better encapsulation of guest molecules

    Trigonal columnar self-assembly of bent phasmid mesogens

    Get PDF
    Three compounds with a bent rod-like aromatic core and with three alkoxy chains at each end were synthesised by click reaction. The compounds form a columnar liquid crystal phase with non-centrosymmetric trigonal p31m symmetry, the columns having a 3-arm star-like cross-section

    Ruminant Self-Medication Against Gastrointestinal Nematodes: Evidence, Mechanism, and Origins

    Get PDF
    Gastrointestinal helminths challenge ruminants in ways that reduce their fitness. In turn, ruminants have evolved physiological and behavioral adaptations that counteract this challenge. Ruminants display anorexia and avoidance behaviors, which tend to reduce the incidence of parasitism. In addition, ruminants appear to learn to self-medicate against gastrointestinal parasites by increasing consumption of plant secondary compounds with antiparasitic actions. This selective feeding improves health and fitness. Here, we review the evidence for self-medication in ruminants, propose a hypothesis to explain self-medicative behaviors (based on post-ingestive consequences), and discuss mechanisms (e.g., enhanced neophilia, social transmission) that may underlie the ontogeny and spread of self-medicative behaviors in social groups. A better understanding of the mechanisms that underlie and trigger self-medication in parasitized animals will help scientists devise innovative and more sustainable management strategies for improving ruminant health and well-being

    Added Alkane Allows Thermal Thinning of Supramolecular Columns by Forming Superlattice-An X-ray and Neutron Study.

    Get PDF
    We report a columnar superlattice formed by blends of dendron-like Li 3,4,5-tris(n-alkoxy)benzoates with n-alkanes. Without the alkane, the wedge-shaped molecules form liquid crystal columns with 3 dendrons in a supramolecular disk. The same structure exists in the blend, but on heating one dendron is expelled from the disks in every third column and is replaced by the alkane. This superlattice of unequal columns is confirmed by complementary X-ray and neutron diffraction studies. Lateral thermal expansion of dendrons normally leads to the expulsion of excess molecules from the column, reducing the column diameter. However, in the already narrow columns of pure Li salt, expulsion of one of only three dendrons in a disk is not viable. The added alkane facilitates the expulsion, as it replaces the missing dendron. Replacing the alkane with a functional compound can potentially lead to active nanoarrays with relatively large periodicity by using only small molecules
    corecore