799 research outputs found

    Spitzer/MIPS Imaging of NGC 650: Probing the History of Mass Loss on the Asymptotic Giant Branch

    Get PDF
    We present the far-infrared (IR) maps of a bipolar planetary nebula (PN), NGC 650, at 24, 70, and 160 micron taken with the Multiband Imaging Photometer for Spitzer (MIPS) on-board the Spitzer Space Telescope. While the two-peak emission structure seen in all MIPS bands suggests the presence of a near edge-on dusty torus, the distinct emission structure between the 24 micron map and the 70/160 micron maps indicates the presence of two distinct emission components in the central torus. Based on the spatial correlation of these two far-IR emission components with respect to various optical line emission, we conclude that the 24 micron emission is largely due to the [O IV] line at 25.9 micron arising from highly ionized regions behind the ionization front, whereas the 70 and 160 micron emission is due to dust continuum arising from low-temperature dust in the remnant asymptotic giant branch (AGB) wind shell. The far-IR nebula structure also suggests that the enhancement of mass loss at the end of the AGB phase has occurred isotropically, but has ensued only in the equatorial directions while ceasing in the polar directions. The present data also show evidence for the prolate spheroidal distribution of matter in this bipolar PN. The AGB mass loss history reconstructed in this PN is thus consistent with what has been previously proposed based on the past optical and mid-IR imaging surveys of the post-AGB shells.Comment: 9 pages in the emulated ApJ format with 6 figures, to appear in Ap

    Microscopic Theory of Current-Spin Interaction in Ferromagnets

    Full text link
    Interplay between magnetization dynamics and electric current in a conducting ferromagnet is theoretically studied based on a microscopic model calculation. First, the effects of the current on magnetization dynamics (spin torques) are studied with special attention to the "dissipative" torques arising from spin-relaxation processes of conduction electrons. Next, an analysis is given of the "spin motive force", namely, a spin-dependent 'voltage' generation due to magnetization dynamics, which is the reaction to spin torques. Finally, an attempt is presented of a unified description of these effects.Comment: Written in December 2008, published in July 200

    The extinction and dust-to-gas structure of the planetary nebula NGC 7009 observed with MUSE

    Get PDF
    The large field and wavelength range of MUSE is well suited to mapping Galactic planetary nebulae (PN). The bright PN NGC 7009 was observed with MUSE on the VLT during the Science Verification of the instrument in seeing of 0.6". Emission line maps in hydrogen Balmer and Paschen lines were formed from analysis of the MUSE cubes. The measured electron temperature and density from the MUSE cube were employed to predict the theoretical hydrogen line ratios and map the extinction distribution across the nebula. After correction for the interstellar extinction to NGC 7009, the internal dust-to-gas ratio (A_V/N_H) has been mapped for the first time in a PN. The extinction map of NGC 7009 has considerable structure, broadly corresponding to the morphological features of the nebula. A large-scale feature in the extinction map, consisting of a crest and trough, occurs at the rim of the inner shell. The nature of this feature was investigated and instrumental and physical causes considered; no convincing mechanisms were identified to produce this feature, other than mass loss variations in the earlier asymptotic giant branch phase. The dust-to-gas ratio A_V/N_H increases from 0.7 times the interstellar value to >5 times from the centre towards the periphery of the ionized nebula. The integrated A_V/N_H is about 2 times the mean ISM value. It is demonstrated that extinction mapping with MUSE provides a powerful tool for studying the distribution of PN internal dust and the dust-to-gas ratio. (Abridged.)Comment: 10 pages, 7 figures. Accepted by A&

    AKARI Mission Program: Excavating Mass Loss History in Extended Dust Shells of Evolved Stars (MLHES) I. Far-IR Photometry

    Full text link
    We performed a far-IR imaging survey of the circumstellar dust shells of 144 evolved stars as a mission programme of the AKARI infrared astronomical satellite using the Far-Infrared Surveyor (FIS) instrument. With this survey, we deliver far-IR surface brightness distributions of roughly 10' x 40' or 10' x 20' areas of the sky around the target evolved stars in the four FIS bands at 65, 90, 140, and 160 microns. Our objectives are to characterize the far-IR surface brightness distributions of the cold dust component in the circumstellar dust shells, from which we derive the amount of cold dust grains as low as 20 K and empirically establish the history of the early mass loss history. In this first installment of the series, we introduce the project and its aims, describe the observations, data reduction, and surface brightness correction process, and present the entire data set along with the results of integrated photometry measurements (i.e., the central source and circumstellar dust shell altogether). We find that (1) far-IR emission is detected from all but one object at the spatial resolution about 30" - 50" in the corresponding bands, (2) roughly 60 - 70 % of the target sources show some extension, (3) previously unresolved nearby objects in the far-IR are now resolved around 28 target sources, (4) the results of photometry measurements are reasonable with respect to the entries in the AKARI/FIS Bright Source Catalogue, despite the fact that the targets are assumed to be point-sources when catalogue flux densities were computed, and (5) an IR two-color diagram would place the target sources in a roughly linear distribution that may correlate with the age of the circumstellar dust shell and can potentially be used to identify which targets are more extended than others.Comment: To be published in PASJ AKARI Special Issue: 25 pages, 5 figures, 5 tables (and 28 supplementary figures available only in PASJ on-line

    Westbrook's Molecular Gun: Discovery of Near-IR Micro-Structures in AFGL 618

    Get PDF
    We present high-sensitivity near-IR images of a carbon-rich proto-planetary nebula, AFGL 618, obtained with the Subaru Telescope. These images have revealed ``bullets'' and ``horns'' extending farther out from the edges of the previously known bipolar lobes. The spatial coincidence between these near-IR micro-structures and the optical collimated outflow structure, together with the detection of shock-excited, forbidden IR lines of atomic species, strongly suggests that these bullets and horns represent the locations from which [\ion{Fe}{2}] IR lines arise. We have also discovered CO clumps moving at >200> 200 km s1^{-1} at the positions of the near-IR bullets by re-analyzing the existing 12^{12}CO J=10J=1-0 interferometry data. These findings indicate that the near-IR micro-structures represent the positions of shocked surfaces at which fast-moving molecular clumps interface with the ambient circumstellar shell.Comment: 2 figures. To appear in the ApJ Letter

    Degenerate ground state in the classical pyrochlore antiferromagnet Na3_3Mn(CO3_3)2_2Cl

    Get PDF
    In an ideal classical pyrochlore antiferromagnet without perturbations, an infinite degeneracy at a ground state leads to absence of a magnetic order and spin-glass transition. Here we present Na3_3Mn(CO3_3)2_2Cl as a new candidate compound where classical spins are coupled antiferromagnetically on the pyrochlore lattice, and report its structural and magnetic properties.The temperature dependences of the magnetic susceptibility and heat capacity, and the magnetization curve are consistent with those of an SS = 5/2 pyrochlore lattice antiferromagnet with nearest-neighbor interactions of 2 K. Neither an apparent signature of a spin-glass transition nor a magnetic order is detected in magnetization and heat capacity measurements, or powder neutron diffraction experiments. On the other hand, an antiferromagnetic short-range order from the nearest neighbors is evidenced by the QQ-dependence of the diffuse scattering which develops around 0.85 \AA1^{-1}. A high degeneracy near the ground state in Na3_3Mn(CO3_3)2_2Cl is supported by the magnetic entropy estimated as almost 4 J K2^{-2} mol1^{-1} at 0.5 K.Comment: 9 pages, 7 figures, accepted to PR

    Far-infrared imaging of post-AGB stars and (proto)-planetary nebulae with the AKARI Far-Infrared Surveyor

    Full text link
    By tracing the distribution of cool dust in the extended envelopes of post-AGB stars and (proto)-planetary nebulae ((P)PNe) we aim to recover, or constrain, the mass loss history experienced by these stars in their recent past. The Far-Infrared Surveyor (FIS) instrument on board the AKARI satellite was used to obtain far-infrared maps for a selected sample of post-AGB stars and (P)PNe. We derived flux densities (aperture photometry) for 13 post-AGB stars and (P)PNe at four far-infrared wavelengths (60, 90, 140, and 160 um). Radial (azimuthally averaged) profiles are used to investigate the presence of extended emission from cool dust. No (detached) extended emission is detected for any target in our sample at levels significant with respect to background and cirrus emission. Only IRAS 21046+4739 reveals tentative excess emission between 30 and 130". Estimates of the total dust and gas mass from the obtained maps indicate that the envelope masses of these stars should be large in order to be detected with the AKARI FIS. Imaging with higher sensitivity and higher spatial resolution is needed to detect and resolve, if present, any cool compact or extended emission associated with these evolved stars.Comment: accepted for publication in The Astronomical Journal (16 pages, 3 figures and 4 tables

    X Her and TX Psc: Two cases of ISM interaction with stellar winds observed by Herschel

    Full text link
    The asymptotic giant branch (AGB) stars X Her and TX Psc have been imaged at 70 and 160 microns with the PACS instrument onboard the Herschel satellite, as part of the large MESS (Mass loss of Evolved StarS) Guaranteed Time Key Program. The images reveal an axisymmetric extended structure with its axis oriented along the space motion of the stars. This extended structure is very likely to be shaped by the interaction of the wind ejected by the AGB star with the surrounding interstellar medium (ISM). As predicted by numerical simulations, the detailed structure of the wind-ISM interface depends upon the relative velocity between star+wind and the ISM, which is large for these two stars (108 and 55 km/s for X Her and TX Psc, respectively). In both cases, there is a compact blob upstream whose origin is not fully elucidated, but that could be the signature of some instability in the wind-ISM shock. Deconvolved images of X Her and TX Psc reveal several discrete structures along the outermost filaments, which could be Kelvin-Helmholtz vortices. Finally, TX Psc is surrounded by an almost circular ring (the signature of the termination shock?) that contrasts with the outer, more structured filaments. A similar inner circular structure seems to be present in X Her as well, albeit less clearly.Comment: 11 pages, Astronomy & Astrophysics, in pres

    Variability in Proto-Planetary Nebulae: I. Light Curve Studies of 12 Carbon-Rich Objects

    Full text link
    We have carried out long-term (14 years) V and R photometric monitoring of 12 carbon-rich proto-planetary nebulae. The light and color curves display variability in all of them. The light curves are complex and suggest multiple periods, changing periods, and/or changing amplitudes, which are attributed to pulsation. A dominant period has been determined for each and found to be in the range of ~150 d for the coolest (G8) to 35-40 d for the warmest (F3). A clear, linear inverse relationship has been found in the sample between the pulsation period and the effective temperature and also an inverse linear relationship between the amplitude of light variation and the effective temperature. These are consistent with the expectation for a pulsating post-AGB star evolving toward higher temperature at constant luminosity. The published spectral energy distributions and mid-infrared images show these objects to have cool (200 K), detached dust shells and published models imply that intensive mass loss ended a few thousand years ago. The detection of periods as long as 150 d in these requires a revision in the published post-AGB evolution models that couple the pulsation period to the mass loss rate and that assume that intensive mass loss ended when the pulsation period had decreased to 100 d. This revision will have the effect of extending the time scale for the early phases of post-AGB evolution. It appears that real time evolution in the pulsation periods of individual objects may be detectable on the time scale of two decades
    corecore