14 research outputs found
Big-Bang Cosmology with Photon Creation
The temperature evolution law is determined for an expanding FRW type
Universe with a mixture of matter and radiation where "adiabatic" creation of
photons has taken place. Taking into account this photon creation we discuss
the physical conditions for having a hot big bang Universe. We also compare our
results to the ones obtained from the standard FRW model.Comment: 9 pages, no figures, LaTex (RevTex). Minor corrections on the cover
page and reference
On a linear programming approach to the discrete Willmore boundary value problem and generalizations
We consider the problem of finding (possibly non connected) discrete surfaces
spanning a finite set of discrete boundary curves in the three-dimensional
space and minimizing (globally) a discrete energy involving mean curvature.
Although we consider a fairly general class of energies, our main focus is on
the Willmore energy, i.e. the total squared mean curvature Our purpose is to
address the delicate task of approximating global minimizers of the energy
under boundary constraints.
The main contribution of this work is to translate the nonlinear boundary
value problem into an integer linear program, using a natural formulation
involving pairs of elementary triangles chosen in a pre-specified dictionary
and allowing self-intersection.
Our work focuses essentially on the connection between the integer linear
program and its relaxation. We prove that: - One cannot guarantee the total
unimodularity of the constraint matrix, which is a sufficient condition for the
global solution of the relaxed linear program to be always integral, and
therefore to be a solution of the integer program as well; - Furthermore, there
are actually experimental evidences that, in some cases, solving the relaxed
problem yields a fractional solution. Due to the very specific structure of the
constraint matrix here, we strongly believe that it should be possible in the
future to design ad-hoc integer solvers that yield high-definition
approximations to solutions of several boundary value problems involving mean
curvature, in particular the Willmore boundary value problem
Bacterial diversity in snow from mid-latitude mountain areas: Alps, Eastern Anatolia, Karakoram and Himalaya
Snow can be considered an independent ecosystem that hosts active microbial communities. Snow microbial communities have been extensively investigated in the Arctic and in the Antarctica, but rarely in mid-latitude mountain areas. In this study, we investigated the bacterial communities of snow collected in four glacierized areas (Alps, Eastern Anatolia, Karakoram and Himalaya) by high-throughput DNA sequencing. We also investigated the origin of the air masses that produced the sampled snowfalls by reconstructing back-trajectories. A standardized approach was applied to all the analyses in order to ease comparison among different communities and geographical areas. The bacterial communities hosted from 25 to 211 Operational Taxonomic Units (OTUs), and their structure differed significantly between geographical areas. This suggests that snow bacterial communities may largely derive from 'local' air bacteria, maybe by deposition of airborne particulate of local origin that occurs during snowfall. However, some evidences suggest that a contribution of bacteria collected during air mass uplift to snow communities cannot be excluded, particularly when the air mass that originated the snow event is particularly rich in dust
On thermodynamically consistent Stefan problems with variable surface energy
A thermodynamically consistent two-phase Stefan problem with
temperature-dependent surface tension and with or without kinetic undercooling
is studied. It is shown that these problems generate local semiflows in
well-defined state manifolds. If a solution does not exhibit singularities, it
is proved that it exists globally in time and converges towards an equilibrium
of the problem. In addition, stability and instability of equilibria is
studied. In particular, it is shown that multiple spheres of the same radius
are unstable if surface heat capacity is small; however, if kinetic
undercooling is absent, they are stable if surface heat capacity is
sufficiently large.Comment: To appear in Arch. Ration. Mech. Anal. The final publication is
available at Springer via http://dx.doi.org/10.1007/s00205-015-0938-y. arXiv
admin note: substantial text overlap with arXiv:1101.376
Reproducibility in the absence of selective reporting : An illustration from large-scale brain asymmetry research
Altres ajuts: Max Planck Society (Germany).The problem of poor reproducibility of scientific findings has received much attention over recent years, in a variety of fields including psychology and neuroscience. The problem has been partly attributed to publication bias and unwanted practices such as p-hacking. Low statistical power in individual studies is also understood to be an important factor. In a recent multisite collaborative study, we mapped brain anatomical left-right asymmetries for regional measures of surface area and cortical thickness, in 99 MRI datasets from around the world, for a total of over 17,000 participants. In the present study, we revisited these hemispheric effects from the perspective of reproducibility. Within each dataset, we considered that an effect had been reproduced when it matched the meta-analytic effect from the 98 other datasets, in terms of effect direction and significance threshold. In this sense, the results within each dataset were viewed as coming from separate studies in an "ideal publishing environment," that is, free from selective reporting and p hacking. We found an average reproducibility rate of 63.2% (SD = 22.9%, min = 22.2%, max = 97.0%). As expected, reproducibility was higher for larger effects and in larger datasets. Reproducibility was not obviously related to the age of participants, scanner field strength, FreeSurfer software version, cortical regional measurement reliability, or regional size. These findings constitute an empirical illustration of reproducibility in the absence of publication bias or p hacking, when assessing realistic biological effects in heterogeneous neuroscience data, and given typically-used sample sizes