24 research outputs found

    Paragonimus westermani and Paragonimus species

    No full text
    Paragonimiasis is a zoonotic food-borne lung disease caused by lung flukes of the genus Paragonimus and acquired by consumption of raw/undercooked freshwater crabs/crayfish or wild boar meat. Paragonimus westermani is the best known species to infect humans in Asia, but several other species of human pathogens are also present. Molecular phylogenetic analyses assign most Asian Paragonimus species into four species complexes with some correlation to human pathogenesis. Paragonimus species exploit a range of mammalian definitive hosts and, as intermediate hosts, freshwater snails and crustaceans, eradication of which is not feasible. Avoidance of consumption of raw/undercooked foods and early diagnosis/treatment are recommended for the control of this disease

    Assessing the suitability of mitochondrial and nuclear DNA genetic markers for molecular systematics and species identification of helminths

    No full text
    Background Genetic markers are employed widely in molecular studies, and their utility depends on the degree of sequence variation, which dictates the type of application for which they are suited. Consequently, the suitability of a genetic marker for any specific application is complicated by its properties and usage across studies. To provide a yardstick for future users, in this study we assess the suitability of genetic markers for molecular systematics and species identification in helminths and provide an estimate of the cut-off genetic distances per taxonomic level. Methods We assessed four classes of genetic markers, namely nuclear ribosomal internal transcribed spacers, nuclear rRNA, mitochondrial rRNA and mitochondrial protein-coding genes, based on certain properties that are important for species identification and molecular systematics. For molecular identification, these properties are inter-species sequence variation; length of reference sequences; easy alignment of sequences; and easy to design universal primers. For molecular systematics, the properties are: average genetic distance from order/suborder to species level; the number of monophyletic clades at the order/suborder level; length of reference sequences; easy alignment of sequences; easy to design universal primers; and absence of nucleotide substitution saturation. Estimation of the cut-off genetic distances was performed using the ‘K-means’ clustering algorithm. Results The nuclear rRNA genes exhibited the lowest sequence variation, whereas the mitochondrial genes exhibited relatively higher variation across the three groups of helminths. Also, the nuclear and mitochondrial rRNA genes were the best possible genetic markers for helminth molecular systematics, whereas the mitochondrial protein-coding and rRNA genes were suitable for molecular identification. We also revealed that a general gauge of genetic distances might not be adequate, using evidence from the wide range of genetic distances among nematodes. Conclusion This study assessed the suitability of DNA genetic markers for application in molecular systematics and molecular identification of helminths. We provide a novel way of analyzing genetic distances to generate suitable cut-off values for each taxonomic level using the ‘K-means’ clustering algorithm. The estimated cut-off genetic distance values, together with the summary of the utility and limitations of each class of genetic markers, are useful information that can benefit researchers conducting molecular studies on helminths

    Is Opisthorchis viverrini

    No full text

    A new PCR-based approach indicates the range of Clonorchis sinensis now extends to central Thailand

    Get PDF
    Differentiation of the fish-borne trematodes belonging to the Opisthorchiidae, Heterophyidae and Lecithodendriidae is important from a clinical and epidemiological perspective, yet it is impossible to do using conventional coprological techniques, as the eggs are morphologically similar. Epidemiological investigation therefore currently relies on morphological examination of adult worms following expulsion chemotherapy. A PCR test capable of amplifying a segment of the internal transcribed spacer region of ribosomal DNA for the opisthorchiid and heterophyid flukes eggs taken directly from faeces was developed and evaluated in a rural community in central Thailand. The lowest quantity of DNA that could be amplified from individual adults of Opisthorchis viverrini, Clonorchis sinensis and Haplorchis taichui was estimated at 0.6 pg, 0.8 pg and 3 pg, respectively. The PCR was capable of detecting mixed infection with the aforementioned species of flukes under experimental conditions. A total of 11.6% of individuals in rural communities in Sanamchaikaet district, central Thailand, were positive for ‘Opisthorchis-like’ eggs in their faeces using conventional parasitological detection techniques. In comparison to microscopy, the PCR yielded a sensitivity and specificity of 71.0% and 76.7%, respectively. Analysis of the microscopy-positive PCR products revealed 64% and 23% of individuals to be infected with O. viverrini and C. sinensis, respectively. The remaining 13% (three individuals) were identified as eggs of Didymozoidae, presumably being passed mechanically in the faeces following the ingestion of infected fishes. An immediate finding of this study is the identification and first report of a C. sinensis–endemic community in central Thailand. This extends the known range of this liver fluke in Southeast Asia. The PCR developed herein provides an important tool for the specific identification of liver and intestinal fluke species for future epidemiological surveys
    corecore