14 research outputs found

    Triggering a Cell Shape Change by Exploiting Preexisting Actomyosin Contractions

    Get PDF
    Apical constriction changes cell shapes, driving critical morphogenetic events including gastrulation in diverse organisms and neural tube closure in vertebrates. Apical constriction is thought to be triggered by contraction of apical actomyosin networks. We found that apical actomyosin contractions began before cell shape changes in both C. elegans and Drosophila. In C. elegans, actomyosin networks were initially dynamic, contracting and generating cortical tension without significant shrinking of apical surfaces. Apical cell-cell contact zones and actomyosin only later moved increasingly in concert, with no detectable change in actomyosin dynamics or cortical tension. Thus, apical constriction appears to be triggered not by a change in cortical tension but by dynamic linking of apical cell-cell contact zones to an already contractile apical cortex

    Triggering a Cell Shape Change by Exploiting Preexisting Actomyosin Contractions

    No full text
    Apical constriction changes cell shapes, driving critical morphogenetic events including gastrulation in diverse organisms and neural tube closure in vertebrates. Apical constriction is thought to be triggered by contraction of apical actomyosin networks. We found that apical actomyosin contractions began before cell shape changes in both C. elegans and Drosophila. In C. elegans, actomyosin networks were initially dynamic, contracting and generating cortical tension without significant shrinking of apical surfaces. Apical cell-cell contact zones and actomyosin only later moved increasingly in concert, with no detectable change in actomyosin dynamics or cortical tension. Thus, apical constriction appears to be triggered not by a change in cortical tension but by dynamic linking of apical cell-cell contact zones to an already contractile apical cortex

    A novel osteotomy preparation technique to preserve implant site viability and enhance osteogenesis

    No full text
    The preservation of bone viability at an osteotomy site is a critical variable for subsequent implant osseointegration. Recent biomechanical studies evaluating the consequences of site preparation led us to rethink the design of bone-cutting drills, especially those intended for implant site preparation. We present here a novel drill design that is designed to efficiently cut bone at a very low rotational velocity, obviating the need for irrigation as a coolant. The low-speed cutting produces little heat and, consequently, osteocyte viability is maintained. The lack of irrigation, coupled with the unique design of the cutting flutes, channels into the osteotomy autologous bone chips and osseous coagulum that have inherent osteogenic potential. Collectively, these features result in robust, new bone formation at rates significantly faster than those observed with conventional drilling protocols. These preclinical data have practical implications for the clinical preparation of osteotomies and alveolar bone reconstructive surgeries
    corecore